IDEAS home Printed from https://ideas.repec.org/p/fip/fednsr/824.html
   My bibliography  Save this paper

Estimating dynamic panel models: backing out the Nickell Bias

Author

Listed:
  • Jerry A. Hausman
  • Maxim L. Pinkovskiy

Abstract

We propose a novel estimator for the dynamic panel model, which solves the failure of strict exogeneity by calculating the bias in the first-order conditions as a function of the autoregressive parameter and solving the resulting equation. We show that this estimator performs well as compared with approaches in current use. We also propose a general method for including predetermined variables in fixed-effects panel regressions that appears to perform well.

Suggested Citation

  • Jerry A. Hausman & Maxim L. Pinkovskiy, 2017. "Estimating dynamic panel models: backing out the Nickell Bias," Staff Reports 824, Federal Reserve Bank of New York.
  • Handle: RePEc:fip:fednsr:824
    as

    Download full text from publisher

    File URL: https://www.newyorkfed.org/research/staff_reports/sr824.html
    File Function: Summary
    Download Restriction: no

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr824.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hahn, Jinyong & Hausman, Jerry & Kuersteiner, Guido, 2007. "Long difference instrumental variables estimation for dynamic panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 574-617, October.
    2. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    3. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    4. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    5. Hahn, Jinyong, 1999. "How informative is the initial condition in the dynamic panel model with fixed effects?," Journal of Econometrics, Elsevier, vol. 93(2), pages 309-326, December.
    6. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. In Choi & Sanghyun Jung, 2021. "Cross-sectional quasi-maximum likelihood and bias-corrected pooled least squares estimators for short dynamic panels," Empirical Economics, Springer, vol. 60(1), pages 177-203, January.
    2. Jerry Hausman & Maxim L. Pinkovskiy, 2017. "Estimating dynamic panel models: backing out the Nickell Bias," CeMMAP working papers CWP53/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. In Choi, 2016. "Cross-sectional maximum likelihood and bias-corrected pooled least squares estimators for dynamic panels with short T," Working Papers 1610, Research Institute for Market Economy, Sogang University.
    4. Michael Binder & Cheng Hsiao & M. Hashem Pesaran, 2000. "Estimation and Inference In Short Panel Vector Autoregressions with Unit Roots And Cointegration," CESifo Working Paper Series 374, CESifo.
    5. Binder, Michael & Hsiao, Cheng & Pesaran, M. Hashem, 2005. "Estimation And Inference In Short Panel Vector Autoregressions With Unit Roots And Cointegration," Econometric Theory, Cambridge University Press, vol. 21(4), pages 795-837, August.
    6. Majid M. Al-Sadoon & Tong Li & M. Hashem Pesaran, 2017. "Exponential class of dynamic binary choice panel data models with fixed effects," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 898-927, October.
    7. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    8. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    9. Ambra Poggi, 2007. "Does persistence of social exclusion exist in Spain?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(1), pages 53-72, April.
    10. Martin A. Carree, 2002. "Nearly Unbiased Estimation in Dynamic Panel Data Models with Exogenous Variables," Tinbergen Institute Discussion Papers 02-007/2, Tinbergen Institute.
    11. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," CESifo Working Paper Series 3850, CESifo.
    12. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54.
    13. Kruiniger, Hugo, 2013. "Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions," Journal of Econometrics, Elsevier, vol. 173(2), pages 175-188.
    14. Tong Li & Xiaoyong Zheng, 2008. "Semiparametric Bayesian inference for dynamic Tobit panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(6), pages 699-728.
    15. Richiardi Matteo & Poggi Ambra, 2012. "Imputing Individual Effects in Dynamic Microsimulation Models. An application of the Rank Method," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201213, University of Turin.
    16. Jan Kiviet & Milan Pleus & Rutger Poldermans, 2017. "Accuracy and Efficiency of Various GMM Inference Techniques in Dynamic Micro Panel Data Models," Econometrics, MDPI, Open Access Journal, vol. 5(1), pages 1-54, March.
    17. Ambra Poggi & Matteo Richiardi, 2012. "Accounting for Unobserved Heterogeneity in Discrete-time, Discrete-choice Dynamic Microsimulation Models. An application to Labor Supply and Household Formation in Italy," LABORatorio R. Revelli Working Papers Series 117, LABORatorio R. Revelli, Centre for Employment Studies.
    18. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    19. Dang, Viet Anh & Kim, Minjoo & Shin, Yongcheol, 2012. "Asymmetric capital structure adjustments: New evidence from dynamic panel threshold models," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 465-482.
    20. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.

    More about this item

    Keywords

    dynamic panel data; bias correction; econometrics;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fednsr:824. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: https://edirc.repec.org/data/frbnyus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.