IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Multivariate Volatility Impulse Response Analysis of GFC News Events

Listed author(s):
  • Allen, D.E.
  • McAleer, M.J.
  • Powell, R.J.
  • Singh, A.K.

This paper applies the Hafner and Herwartz (2006) (hereafter HH) approach to the analysis of multivariate GARCH models using volatility impulse response analysis. The data set features ten years of daily returns series for the New York Stock Exchange Index and the FTSE 100 index from the London Stock Exchange, from 3 January 2005 to 31 January 2015. This period captures both the Global Financial Crisis (GFC) and the subsequent European Sovereign Debt Crisis (ESDC). The attraction of the HH approach is that it involves a novel application of the concept of impulse response functions, tracing the effects of independent shocks on volatility through time, while avoiding typical orthogonalization and ordering problems. Volatility impulse response functions (VIRF) provide information about the impact of independent shocks on volatility. HH’s VIRF extends a framework provided by Koop et al. (1996) for the analysis of impulse responses. This approach is novel because it explores the effects of shocks to the conditional variance, as opposed to the conditional mean. HH use the fact that GARCH models can be viewed as being linear in the squares, and that multivariate GARCH models are known to have a VARMA representation with non-Gaussian errors. They use this particular structure to calculate conditional expectations of volatility analytically in their VIRF analysis. A Jordan decomposition of Σt is used to obtain independent and identically distributed innovations. A general issue in the approach is the choice of baseline volatilities. VIRF is defined as the expectation of volatility conditional on an initial shock and on history, minus the baseline expectation that conditions on history. This makes the process endogenous, but the choice of the baseline shock within the data set makes a difference. We explore the impact of three different shocks, the first marking the onset of the GFC, which we date as 9 August 2007 (GFC1). This began with the seizure in the banking system precipitated by BNP Paribas announcing that it was ceasing activity in three hedge funds that specialised in US mortgage debt. It took a year for the financial crisis to come to a head, but it did so on 15 September 2008, when the US government allowed the investment bank Lehman Brothers to go bankrupt (GFC2). The third shock is 9 May 2010, which marked the point at which the focus of concern switched from the private sector to the public sector. A further contribution of this paper is the inclusion of leverage, or asymmetric effects. Our modelling is undertaken in the context of a multivariate GARCH model featuring pre-whitened return series, which are then analysed using both BEKK and diagonal BEKK models with the t-distribution. A key result is that the impact of negative shocks is larger, in terms of the effects on variances and covariances, but shorter in duration, in this case a difference between three and six months, in the context of the return series.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://repub.eur.nl/pub/78711/EI2015-22.pdf
Download Restriction: no

Paper provided by Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute in its series Econometric Institute Research Papers with number EI2015-22.

as
in new window

Length: 26
Date of creation: 01 Jul 2015
Handle: RePEc:ems:eureir:78711
Contact details of provider: Postal:
Postbus 1738, 3000 DR Rotterdam

Phone: 31 10 4081111
Web page: http://www.eur.nl/ese

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
  2. Chia-Lin Chang & Yiying Li & Michael McAleer, 2015. "Volatility Spillovers Between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Documentos de Trabajo del ICAE 2015-08, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  3. Tauchen, George & Zhang, Harold & Liu, Ming, 1996. "Volume, volatility, and leverage: A dynamic analysis," Journal of Econometrics, Elsevier, vol. 74(1), pages 177-208, September.
  4. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  5. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
  6. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  7. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
  8. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
  9. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
  10. Hafner, Christian M. & Herwartz, Helmut, 2006. "Volatility impulse responses for multivariate GARCH models: An exchange rate illustration," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 719-740, August.
  11. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
  12. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
  13. Lin, Wen-Ling, 1997. "Impulse Response Function for Conditional Volatility in GARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 15-25, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ems:eureir:78711. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.