IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/66226.html
   My bibliography  Save this paper

Climate value at risk of global financial assets

Author

Listed:
  • Dietz, Simon
  • Bowen, Alex
  • Dixon, Charlie
  • Gradwell, Philip

Abstract

Investors and financial regulators are increasingly aware of climate-change risks. So far, most of the attention has fallen on whether controls on carbon emissions will strand the assets of fossil-fuel companies1, 2. However, it is no less important to ask, what might be the impact of climate change itself on asset values? Here we show how a leading integrated assessment model can be used to estimate the impact of twenty-first-century climate change on the present market value of global financial assets. We find that the expected ‘climate value at risk’ (climate VaR) of global financial assets today is 1.8% along a business-as-usual emissions path. Taking a representative estimate of global financial assets, this amounts to US$2.5 trillion. However, much of the risk is in the tail. For example, the 99th percentile climate VaR is 16.9%, or US$24.2 trillion. These estimates would constitute a substantial write-down in the fundamental value of financial assets. Cutting emissions to limit warming to no more than 2 °C reduces the climate VaR by an expected 0.6 percentage points, and the 99th percentile reduction is 7.7 percentage points. Including mitigation costs, the present value of global financial assets is an expected 0.2% higher when warming is limited to no more than 2 °C, compared with business as usual. The 99th percentile is 9.1% higher. Limiting warming to no more than 2 °C makes financial sense to risk-neutral investors—and even more so to the risk averse.

Suggested Citation

  • Dietz, Simon & Bowen, Alex & Dixon, Charlie & Gradwell, Philip, 2016. "Climate value at risk of global financial assets," LSE Research Online Documents on Economics 66226, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:66226
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/66226/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon Dietz & Nicholas Stern, 2015. "Endogenous Growth, Convexity of Damage and Climate Risk: How Nordhaus' Framework Supports Deep Cuts in Carbon Emissions," Economic Journal, Royal Economic Society, vol. 0(583), pages 574-620, March.
    2. Dietz, Simon & Stern, Nicholas, 2015. "Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions," LSE Research Online Documents on Economics 58406, London School of Economics and Political Science, LSE Library.
    3. Elisabeth J. Moyer & Mark D. Woolley & Nathan J. Matteson & Michael J. Glotter & David A. Weisbach, 2014. "Climate Impacts on Economic Growth as Drivers of Uncertainty in the Social Cost of Carbon," The Journal of Legal Studies, University of Chicago Press, vol. 43(2), pages 401-425.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    2. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    3. Yongyang Cai & William Brock & Anastasios Xepapadeas, 2023. "Climate Change Impact on Economic Growth: Regional Climate Policy under Cooperation and Noncooperation," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 569-605.
    4. Tol, Richard S.J., 2019. "A social cost of carbon for (almost) every country," Energy Economics, Elsevier, vol. 83(C), pages 555-566.
    5. Dafermos, Yannis & Nikolaidi, Maria & Galanis, Giorgos, 2017. "A stock-flow-fund ecological macroeconomic model," Ecological Economics, Elsevier, vol. 131(C), pages 191-207.
    6. William Brock & Anastasios Xepapadeas, 2020. "Climate change policy under spatial heat transport and polar amplification," Chapters, in: Graciela Chichilnisky & Armon Rezai (ed.), Handbook on the Economics of Climate Change, chapter 7, pages 127-166, Edward Elgar Publishing.
    7. Surender Kumar & Madhu Khanna, 2019. "Temperature and production efficiency growth: empirical evidence," Climatic Change, Springer, vol. 156(1), pages 209-229, September.
    8. William Brock & Anastasios Xepapadeas, 2015. "Spatial Heat Transport, Polar Amplification and Climate Change Policy," DEOS Working Papers 1515, Athens University of Economics and Business.
    9. Gaël Giraud & Florent MCISAAC & Emmanuel BOVARI & Ekaterina ZATSEPINA, 2017. "Coping with the Collapse: A Stock-Flow Consistent Monetary Macrodynamics of Global Warming. Updated version: January 2017," Working Paper b6f3f098-ed24-44bf-9cdd-1, Agence française de développement.
    10. Brock, W. & Xepapadeas, A., 2017. "Climate change policy under polar amplification," European Economic Review, Elsevier, vol. 99(C), pages 93-112.
    11. Marco Letta & Richard S. J. Tol, 2019. "Weather, Climate and Total Factor Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(1), pages 283-305, May.
    12. Signe Krogstrup & William Oman, 2019. "Macroeconomic and Financial Policies for Climate Change Mitigation: A Review of the Literature," IMF Working Papers 2019/185, International Monetary Fund.
    13. Rickels, Wilfried & Quaas, Martin F. & Ricke, Katharine & Quaas, Johannes & Moreno-Cruz, Juan & Smulders, Sjak, 2020. "Who turns the global thermostat and by how much?," Energy Economics, Elsevier, vol. 91(C).
    14. Li Chen & Bin Jiang & Chuan Wang, 2023. "Climate change and urban total factor productivity: evidence from capital cities and municipalities in China," Empirical Economics, Springer, vol. 65(1), pages 401-441, July.
    15. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    16. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    17. Matthew Agarwala & Josh Martin, 2022. "Environmentally-adjusted productivity measures for the UK," Working Papers 028, The Productivity Institute.
    18. Tsigaris, Panagiotis & Wood, Joel, 2019. "The potential impacts of climate change on capital in the 21st century," Ecological Economics, Elsevier, vol. 162(C), pages 74-86.
    19. Schultes, Anselm & Piontek, Franziska & Soergel, Bjoern & Rogelj, Joeri & Baumstark, Lavinia & Kriegler, Elmar & Edenhofer, Ottmar & Luderer, Gunnar, 2020. "Economic damages from on-going climate change imply deeper near-term emission cuts," MPRA Paper 103655, University Library of Munich, Germany.
    20. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.

    More about this item

    Keywords

    environmental economics; governance;

    JEL classification:

    • F3 - International Economics - - International Finance
    • G3 - Financial Economics - - Corporate Finance and Governance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:66226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.