IDEAS home Printed from
   My bibliography  Save this paper

Consumer search: evidence from path-tracking data


  • Pinna, Fabio
  • Seiler, Stephan


We estimate the effect of consumer search on the price of the purchased product in a physical store environment. We implement the analysis using a unique data set obtained from radio frequency identification tags, which are attached to supermarket shopping carts. This technology allows us to record consumers' purchases as well as the time they spent in front of the shelf when contemplating which product to buy, giving us a direct measure of search effort. Controlling for a host of confounding factors, we estimate that an additional minute spent searching lowers price paid by $2.10 which represents 8 percent of average trip-level expenditure.

Suggested Citation

  • Pinna, Fabio & Seiler, Stephan, 2014. "Consumer search: evidence from path-tracking data," LSE Research Online Documents on Economics 60447, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:60447

    Download full text from publisher

    File URL:
    File Function: Open access version.
    Download Restriction: no

    References listed on IDEAS

    1. Hoyer, Wayne D, 1984. "An Examination of Consumer Decision Making for a Common Repeat Purchase Product," Journal of Consumer Research, Oxford University Press, vol. 11(3), pages 822-829, December.
    2. Babur De Los Santos & Ali Hortacsu & Matthijs R. Wildenbeest, 2012. "Testing Models of Consumer Search Using Data on Web Browsing and Purchasing Behavior," American Economic Review, American Economic Association, vol. 102(6), pages 2955-2980, October.
    3. Stephan Seiler, 2013. "The impact of search costs on consumer behavior: A dynamic approach," Quantitative Marketing and Economics (QME), Springer, vol. 11(2), pages 155-203, June.
    4. Draganska, Michaela & Klapper, Daniel, 2010. "Choice Set Heterogeneity and the Role of Advertising: An Analysis with Micro and Macro Data," Research Papers 2063, Stanford University, Graduate School of Business.
    5. Elisabeth Honka, 2014. "Quantifying search and switching costs in the US auto insurance industry," RAND Journal of Economics, RAND Corporation, vol. 45(4), pages 847-884, December.
    6. Sam K. Hui & Peter S. Fader & Eric T. Bradlow, 2009. "Path Data in Marketing: An Integrative Framework and Prospectus for Model Building," Marketing Science, INFORMS, vol. 28(2), pages 320-335, 03-04.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Petrikaitė, Vaiva, 2016. "Collusion with costly consumer search," International Journal of Industrial Organization, Elsevier, vol. 44(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Pinna & Stephan Seiler, 2014. "Consumer Search: Evidence from Path-tracking Data," CEP Discussion Papers dp1296, Centre for Economic Performance, LSE.
    2. Tiago Pires, 2016. "Costly search and consideration sets in storable goods markets," Quantitative Marketing and Economics (QME), Springer, vol. 14(3), pages 157-193, September.
    3. Stephan Seiler & Fabio Pinna, 2017. "Estimating Search Benefits from Path-Tracking Data: Measurement and Determinants," Marketing Science, INFORMS, vol. 36(4), pages 565-589, July.
    4. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    5. Navid Mojir & K. Sudhir, 2014. "Price Search Across Time and Across Stores," Cowles Foundation Discussion Papers 1942R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2019.
    6. Bart J. Bronnenberg & Jun B. Kim & Carl F. Mela, 2016. "Zooming In on Choice: How Do Consumers Search for Cameras Online?," Marketing Science, INFORMS, vol. 35(5), pages 693-712, September.
    7. Thomas Blake & Chris Nosko & Steven Tadelis, 2016. "Returns to Consumer Search: Evidence from eBay," NBER Working Papers 22302, National Bureau of Economic Research, Inc.
    8. Anocha Aribarg & Thomas Otter & Daniel Zantedeschi & Greg M. Allenby & Taylor Bentley & David J. Curry & Marc Dotson & Ty Henderson & Elisabeth Honka & Rajeev Kohli & Kamel Jedidi & Stephan Seiler & X, 2018. "Advancing Non-compensatory Choice Models in Marketing," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 82-92, March.
    9. Matsumoto, Brett & Spence, Forrest, 2016. "Price beliefs and experience: Do consumers’ beliefs converge to empirical distributions with repeated purchases?," Journal of Economic Behavior & Organization, Elsevier, vol. 126(PA), pages 243-254.
    10. Aditya Jain & Sanjog Misra & Nils Rudi, 2020. "The Effect of Sales Assistance on Purchase Decisions: An analysis using retail video data," Quantitative Marketing and Economics (QME), Springer, vol. 18(3), pages 273-303, September.
    11. Navid Mojir & K. Sudhir, 2014. "A Model of Multi-pass Search: Price Search across Stores and Time," Cowles Foundation Discussion Papers 1942R2, Cowles Foundation for Research in Economics, Yale University, revised Feb 2020.
    12. Helmers, Christian & Krishnan, Pramila & Patnam, Manasa, 2019. "Attention and saliency on the internet: Evidence from an online recommendation system," Journal of Economic Behavior & Organization, Elsevier, vol. 161(C), pages 216-242.
    13. Pires, Tiago, 2018. "Measuring the effects of search costs on equilibrium prices and profits," International Journal of Industrial Organization, Elsevier, vol. 60(C), pages 179-205.
    14. Mantian (Mandy) Hu & Chu (Ivy) Dang & Pradeep K. Chintagunta, 2019. "Search and Learning at a Daily Deals Website," Marketing Science, INFORMS, vol. 38(4), pages 609-642, July.
    15. De los Santos, Babur, 2018. "Consumer search on the Internet," International Journal of Industrial Organization, Elsevier, vol. 58(C), pages 66-105.
    16. Andrés Elberg & Pedro M. Gardete & Rosario Macera & Carlos Noton, 2019. "Dynamic effects of price promotions: field evidence, consumer search, and supply-side implications," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 1-58, March.
    17. Timothy J. Richards & Gordon J. Klein & Celine Bonnet & Zohra Bouamra-Mechemache, 2020. "Strategic Obfuscation and Retail Pricing," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 57(4), pages 859-889, December.
    18. Xing Zhang & Tat Y. Chan & Ying Xie, 2018. "Price Search and Periodic Price Discounts," Management Science, INFORMS, vol. 64(2), pages 495-510, February.
    19. Yuxin Chen & Song Yao, 2017. "Sequential Search with Refinement: Model and Application with Click-Stream Data," Management Science, INFORMS, vol. 63(12), pages 4345-4365, December.
    20. Christian Helmers & Pramila Krishnan & Manasa Patnam, 2015. "Attention and Saliency on the Internet: Evidence from an Online Recommendation System," Cambridge Working Papers in Economics 1563, Faculty of Economics, University of Cambridge.

    More about this item


    Consumer search; in-store marketing; path data;

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • L11 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Production, Pricing, and Market Structure; Size Distribution of Firms
    • L15 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Information and Product Quality

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:60447. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (LSERO Manager). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.