IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/41749.html
   My bibliography  Save this paper

Capturing the time-varying drivers of an epidemic using stochastic dynamical systems

Author

Listed:
  • Dureau, Joseph
  • Kalogeropoulos, Konstantinos
  • Baguelin, Marc

Abstract

Epidemics are often modeled using non-linear dynamical systems observed through partial and noisy data. In this paper, we consider stochastic extensions in order to capture unknown influences (changing behaviors, public interventions, seasonal effects, etc.). These models assign diffusion processes to the time-varying parameters, and our inferential procedure is based on a suitably adjusted adaptive particle Markov chain Monte Carlo algorithm. The performance of the proposed computational methods is validated on simulated data and the adopted model is applied to the 2009 H1N1 pandemic in England. In addition to estimating the effective contact rate trajectories, the methodology is applied in real time to provide evidence in related public health decisions. Diffusion-driven susceptible exposed infected retired-type models with age structure are also introduced.

Suggested Citation

  • Dureau, Joseph & Kalogeropoulos, Konstantinos & Baguelin, Marc, 2013. "Capturing the time-varying drivers of an epidemic using stochastic dynamical systems," LSE Research Online Documents on Economics 41749, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:41749
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/41749/
    File Function: Open access version.
    Download Restriction: no

    References listed on IDEAS

    as
    1. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342.
    2. Kalogeropoulos, Konstantinos, 2007. "Likelihood-based inference for a class of multivariate diffusions with unobserved paths," LSE Research Online Documents on Economics 31423, London School of Economics and Political Science, LSE Library.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
    4. Yvo Pokern & Andrew M. Stuart & Petter Wiberg, 2009. "Parameter estimation for partially observed hypoelliptic diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 49-73.
    5. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bayesian inference; particle MCMC; population epidemic model; time-varying parameters;

    JEL classification:

    • I1 - Health, Education, and Welfare - - Health

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:41749. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (LSERO Manager). General contact details of provider: http://edirc.repec.org/data/lsepsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.