IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/24511.html
   My bibliography  Save this paper

Consistent information multivariate density optimizing methodology

Author

Listed:
  • Segoviano, Miguel A.

Abstract

The estimation of the profit and loss distribution of a loan portfolio requires the modelling of the portfolio’s multivariate distribution. This describes the joint likelihood of changes in the credit-risk quality of the loans that make up the portfolio. A significant problem for portfolio credit risk measurement is the greatly restricted data that are available for its modelling. Under these circumstances, convenient parametric assumptions are frequently made in order to represent the nonexistent information. Such assumptions, however, usually do not appropriately describe the behaviour of the assets that are the subject of our interest, loans granted to small and medium enterprises (SMEs), unlisted and arm’s-length firms. This paper proposes the Consistent Information Multivariate Density Optimizing Methodology (CIMDO), based on the cross-entropy approach, as an alternative to generate probability multivariate densities from partial information and without making parametric assumptions. Using the probability integral transformation criterion, we show that the distributions recovered by CIMDO outperform distributions that are used for the measurement of portfolio credit risk of loans granted to SMEs, unlisted and arm’s-length firms.

Suggested Citation

  • Segoviano, Miguel A., 2006. "Consistent information multivariate density optimizing methodology," LSE Research Online Documents on Economics 24511, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:24511
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/24511/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Danielsson, Jon & Shin, Hyun Song & Zigrand, Jean-Pierre, 2001. "Asset price dynamics with value-at-risk constrained traders," LSE Research Online Documents on Economics 119092, London School of Economics and Political Science, LSE Library.
    2. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    3. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    4. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    5. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    6. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    7. Morris, Stephen & Shin, Hyun Song, 1999. "Risk Management with Interdependent Choice," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 15(3), pages 52-62, Autumn.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segoviano, Miguel A., 2006. "Conditional probability of default methodology," LSE Research Online Documents on Economics 24512, London School of Economics and Political Science, LSE Library.
    2. Miguel Segoviano, 2006. "Conditional Probabilty of Default Methodolgy," FMG Discussion Papers dp558, Financial Markets Group.
    3. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    4. Ebnother, Silvan & Vanini, Paolo, 2007. "Credit portfolios: What defines risk horizons and risk measurement?," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3663-3679, December.
    5. Siem Jan Koopman & André Lucas & Pieter Klaassen, 2002. "Pro-Cyclicality, Empirical Credit Cycles, and Capital Buffer Formation," Tinbergen Institute Discussion Papers 02-107/2, Tinbergen Institute.
    6. Correa, Arnildo & Marins, Jaqueline & Neves, Myrian & da Silva, Antonio Carlos, 2014. "Credit Default and Business Cycles: An Empirical Investigation of Brazilian Retail Loans," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(3), September.
    7. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    8. Bonfim, Diana, 2009. "Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 281-299, February.
    9. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, February.
    10. Gagliardini, P. & Gourieroux, C., 2005. "Migration correlation: Definition and efficient estimation," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 865-894, April.
    11. Carling, Kenneth & Rönnegård, Lars & Roszbach, Kasper, 2004. "Is Firm Interdependence within Industries Important for Portfolio Credit Risk?," Working Paper Series 168, Sveriges Riksbank (Central Bank of Sweden).
    12. Segoviano, Miguel & Espinoza, Raphael, 2017. "Consistent measures of systemic risk," LSE Research Online Documents on Economics 118947, London School of Economics and Political Science, LSE Library.
    13. Carling, Kenneth & Jacobson, Tor & Linde, Jesper & Roszbach, Kasper, 2007. "Corporate credit risk modeling and the macroeconomy," Journal of Banking & Finance, Elsevier, vol. 31(3), pages 845-868, March.
    14. Jackson, Patricia & Perraudin, William, 2000. "Regulatory implications of credit risk modelling," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 1-14, January.
    15. Bangia, Anil & Diebold, Francis X. & Kronimus, Andre & Schagen, Christian & Schuermann, Til, 2002. "Ratings migration and the business cycle, with application to credit portfolio stress testing," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 445-474, March.
    16. Feng, D. & Gourieroux, C. & Jasiak, J., 2008. "The ordered qualitative model for credit rating transitions," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 111-130, January.
    17. Dietsch, Michel & Petey, Joël, 2015. "The credit-risk implications of home ownership promotion: The effects of public subsidies and adjustable-rate loans," Journal of Housing Economics, Elsevier, vol. 28(C), pages 103-120.
    18. Lucas, Andre & Klaassen, Pieter, 2006. "Discrete versus continuous state switching models for portfolio credit risk," Journal of Banking & Finance, Elsevier, vol. 30(1), pages 23-35, January.
    19. Bandyopadhyay, Arindam, 2010. "Understanding the Effect of Concentration Risk in the Banks’ Credit Portfolio: Indian Cases," MPRA Paper 24822, University Library of Munich, Germany.
    20. Rudiger Kiesel & William Perraudin & Alex Taylor, 2001. "The structure of credit risk: spread volatility and ratings transitions," Bank of England working papers 131, Bank of England.

    More about this item

    Keywords

    portfolio credit risk; profit and loss distribution; density optimization; entropy distribution; probabilities of default;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:24511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.