IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/0432.html
   My bibliography  Save this paper

Semiparametric Instrumental Variables Estimation and Its Application to Dynamic Oligopoly

Author

Listed:
  • Sangin Park

    (SUNY at Stony Brook)

Abstract

This paper considers a semiparametric regression model in which the error term is correlated with the nonparametric part. An example of this regression model can be found in structural models of dynamic oligopoly. Dynamic oligopoly is a situation in which firms' price-settings (or quantity-settings) are strategically interdependent and have durable effects on the stream of their profits. Dynamic oligopoly fits many industries characterized by the significance of network externalities, learning-by-doing, and informational product differentiation. For a dynamic structural model of the representative agent, the Euler-equation-based estimation technique is usually employed. However, the Euler equations cannot be generally obtained in dynamic oligopoly. As an alternative, we can consider an estimation procedure as follows. Under some regularity conditions, a firm's optimal pricing (or quantity-setting) in dynamic oligopoly can be formulated as a continuous Markov decision problem (MDP). Then we may apply an estimation procedure similar to the nested fixed point algorithm: using ad hoc assumptions for stochastic specification of the evolution of state variables, we may calculate each firm's value functions in equilibrium for each candidate value of the parameter vector and then search for the value of the parameter vector that maximizes the (log) likelihood function or minimizes some distance. It is, however, impractical to implement this estimation procedure in the case of dynamic oligopoly. Most of all, it will result in a prohibitive computational burden. It is well known that continuous MDPs have the problem of Bellman's curse of dimensionality. Even with some simple discretization assumptions and a stochastic algorithm to break the curse of dimensionality, the computational burden to calculate the equilibrium value functions for just one candidate value of the parameter vector is usually huge. In addition, the complexity of the estimation problem usually makes it difficult to determine the robustness of the conclusions to the ad hoc stochastic assumptions. Furthermore, if the stochastic process is misspecified, the estimator for the parameter vector is generally inconsistent. The estimation procedure suggested in this paper, however, enables us to semiparametrically estimate a class of structural models of dynamic oligopoly. It will be shown that first-order profit maximization conditions of dynamic oligopoly may lead to our generic semiparametric regression model. A technical difficulty of this semiparametric regression model, however, is that we can not eliminate the nonparametric part in the two-step estimation procedure of a typical semiparametric regression model. Yet, we can still obtain a semiparametric estimator, called a semiparametric instrumental variables (SIV) estimator, with consistency and asymptotic normality if there exist two sets of instrumental variables (IVs) satisfying both an identification condition and an orthogonality condition. Our estimation plan is as follows. In order to eliminate the nonparametric part, we first filter the nonparametric part by the first set of IVs. For identification, we need the second set of IVs which is not a function of the first set of IVs and must be orthogonal to the filtering error. The paper provides two generic examples in which we can construct these two sets of IVs and then discusses an empirical example of the application of the SIV estimation procedure to estimate network effects in the U.S. home VCR market during the years 1981 - 1988.

Suggested Citation

  • Sangin Park, 2000. "Semiparametric Instrumental Variables Estimation and Its Application to Dynamic Oligopoly," Econometric Society World Congress 2000 Contributed Papers 0432, Econometric Society.
  • Handle: RePEc:ecm:wc2000:0432
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/0432a.pdf
    File Function: main text
    Download Restriction: no

    File URL: http://fmwww.bc.edu/RePEc/es2000/0432b.pdf
    File Function: main text
    Download Restriction: no

    File URL: http://fmwww.bc.edu/RePEc/es2000/0432c.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Andrews, Donald W K, 1991. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Econometrica, Econometric Society, vol. 59(2), pages 307-345, March.
    3. Pakes, Ariel & Olley, Steven, 1995. "A limit theorem for a smooth class of semiparametric estimators," Journal of Econometrics, Elsevier, vol. 65(1), pages 295-332, January.
    4. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    5. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606.
    6. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    7. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    8. Schmalensee, Richard, 1982. "Product Differentiation Advantages of Pioneering Brands," American Economic Review, American Economic Association, vol. 72(3), pages 349-365, June.
    9. Richard Ericson & Ariel Pakes, 1995. "Markov-Perfect Industry Dynamics: A Framework for Empirical Work," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(1), pages 53-82.
    10. Ariel Pakes, 1991. "Dynamic Structural Models: Problems and Prospects. Mixed Continuous Discrete Controls and Market Interactions," Cowles Foundation Discussion Papers 984, Cowles Foundation for Research in Economics, Yale University.
    11. Ariel Pakes & Paul McGuire, 1997. "Stochastic Algorithms for Dynamic Models: Markov Perfect Equilibrium, and the 'Curse' of Dimensionality," Cowles Foundation Discussion Papers 1144, Cowles Foundation for Research in Economics, Yale University.
    12. Chunrong Ai, 1997. "A Semiparametric Maximum Likelihood Estimator," Econometrica, Econometric Society, vol. 65(4), pages 933-964, July.
    13. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    14. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590.
    15. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-596, May.
    16. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Sangin, 2003. "Semiparametric instrumental variables estimation," Journal of Econometrics, Elsevier, vol. 112(2), pages 381-399, February.
    2. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    3. Nina Pavcnik, 2002. "Trade Liberalization, Exit, and Productivity Improvements: Evidence from Chilean Plants," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(1), pages 245-276.
    4. Steven Berry & James Levinsohn & Ariel Pakes, 2004. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 68-105, February.
    5. Steve Berry & Oliver B. Linton & Ariel Pakes, 2004. "Limit Theorems for Estimating the Parameters of Differentiated Product Demand Systems," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 613-654.
    6. Maican, Florin G., 2012. "From Boom to Bust and Back Again: A dynamic analysis of IT services," Working Papers in Economics 543, University of Gothenburg, Department of Economics.
    7. Florin Maican & Matilda Orth, 2017. "Productivity Dynamics and the Role of ‘Big-Box’ Entrants in Retailing," Journal of Industrial Economics, Wiley Blackwell, vol. 65(2), pages 397-438, June.
    8. Marian Rizov & Patrick Paul Walsh, 2009. "Productivity and Trade Orientation in UK Manufacturing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 821-849, December.
    9. Winter, Joachim, 1997. "Ökonometrische Analyse diskreter dynamischer Entscheidungsprozesse," Sonderforschungsbereich 504 Publications 99-27, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    10. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    11. Benkard, C. Lanier, 2000. "A Dynamic Analysis of the Market for Wide-Bodied Commercial Aircraft," Research Papers 1636, Stanford University, Graduate School of Business.
    12. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    13. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    14. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    15. Raphael Bergoeing & Andrés Hernando & Andrea Repetto, 2003. "Idiosyncratic Productivity Shocks and Plant-Level Heterogeneity," Documentos de Trabajo 173, Centro de Economía Aplicada, Universidad de Chile.
    16. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    17. Maican, Florin & Orth, Matilda, 2018. "Inventory Behavior, Demand, and Productivity in Retail," CEPR Discussion Papers 13308, C.E.P.R. Discussion Papers.
    18. Jerome Foncel & Marc Ivaldi & Jrisy Motis, 2008. "An Econometric Workbench for Comparing the Substantive and Dominance Tests in Horizontal Merger Analysis," Working Papers 0833, University of Crete, Department of Economics.
    19. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    20. Maican, Florin & Orth, Matilda, 2021. "Determinants of economies of scope in retail," International Journal of Industrial Organization, Elsevier, vol. 75(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.