IDEAS home Printed from
   My bibliography  Save this paper

Choice Rules with Size Constraints for Multiple Criteria Decision Making




In outranking methods for Multiple Criteria Decision Making (MCDM), pair-wise comparisons of alternatives are often summarized through a fuzzy preference relation. In this paper, the binary preference relation is extended to pairs of subsets of alternatives in order to define on this basis a scoring function over subsets. A choice rule based on maximizing score under size constraint is studied, which turns to formulate as solving a sequence of classical location problems. For comparison with the kernel approach, the interior stability property of the selected subset is discussed and analyzed.

Suggested Citation

  • Alfandari, Laurent, 2004. "Choice Rules with Size Constraints for Multiple Criteria Decision Making," ESSEC Working Papers DR 04002, ESSEC Research Center, ESSEC Business School.
  • Handle: RePEc:ebg:essewp:dr-04002

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Fodor, Janos C. & Roubens, Marc, 1995. "Structure of transitive valued binary relations," Mathematical Social Sciences, Elsevier, vol. 30(1), pages 71-94, August.
    2. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    3. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1984. "Prométhée: a new family of outranking methods in multicriteria analysis," ULB Institutional Repository 2013/9305, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Combinatorial optimization; Fuzzy preferences; Integer Programming; Location; Multiple Criteria Decision Aid;

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebg:essewp:dr-04002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sophie Magnanou). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.