IDEAS home Printed from
   My bibliography  Save this paper

Estimating the value of flexibility from real options: On the accuracy of hybrid electricity price models


  • Christian Pape
  • Oliver Woll
  • Christoph Weber

    (Chair for Management Sciences and Energy Economics, University of Duisburg-Essen (Campus Essen))


Practitioners in the electricity industry aim to assess the value of power plants or other real options several months or even years ahead of operation. Such a valuation is notably required for hedging purposes. The revenue streams to be earned in the spot market are thereby already secured on future markets. Yet the peculiarities of the electricity market, notably the limited storability of electricity and the incompleteness of the derivative markets, make this problem also theoretically challenging since they prevent the straightforward application of standard approaches for price modeling and for hedging. In this context, the contribution of this article is twofold: (1) We present a novel methodology to model electricity prices based on fundamental expectations and accounting for both short-term and long-term uncertainties. This requires the joint modeling of different commodity prices, namely electricity, fuel and CO2 prices. Moreover price distributions have to be modelled in order to assess the real option value adequately ex ante. Specifically, we compare two different modeling approaches to account for long-term variations in multi-commodity price dynamics. (2) We suggest a test procedure and introduce performance measures to analyze the accuracy of the proposed price modeling. We thereby focus on the practically relevant question, whether the price modeling provides ex ante estimates of the value of the real option that are in line with the ex post realized values. This approach is chosen since no derivative markets exist where the (extrinsic) values for the real options could be observed months or years ahead of actual operation. Nonetheless we show that under well-defined assumptions, the ex-ante values derived using the price model should provide unbiased estimates of the ex post values, which are computed as a sum of hedging and spot exercise revenues. The application part shows results for a state-of-the-art gas power plant. By applying the developed performance measures and test statistics, we find that neither of the two investigated price models clearly outperforms the other.

Suggested Citation

  • Christian Pape & Oliver Woll & Christoph Weber, "undated". "Estimating the value of flexibility from real options: On the accuracy of hybrid electricity price models," EWL Working Papers 1804, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
  • Handle: RePEc:dui:wpaper:1804

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Joëts, Marc & Mignon, Valérie, 2012. "On the link between forward energy prices: A nonlinear panel cointegration approach," Energy Economics, Elsevier, vol. 34(4), pages 1170-1175.
    2. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, Open Access Journal, vol. 11(4), pages 1-24, February.
    2. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    3. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    4. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    5. Jenny Brynjarsdottir & Jonathan Hobbs & Amy Braverman & Lukas Mandrake, 2018. "Optimal Estimation Versus MCMC for $$\mathrm{{CO}}_{2}$$ CO 2 Retrievals," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 297-316, June.
    6. Michael K. Adjemian & Valentina G. Bruno & Michel A. Robe, 2020. "Incorporating Uncertainty into USDA Commodity Price Forecasts," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 696-712, March.
    7. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    8. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    9. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    10. Bijak Jakub & Alberts Isabel & Alho Juha & Bryant John & Buettner Thomas & Falkingham Jane & Forster Jonathan J. & Gerland Patrick & King Thomas & Onorante Luca & Keilman Nico & O’Hagan Anthony & Owen, 2015. "Letter to the Editor," Journal of Official Statistics, Sciendo, vol. 31(4), pages 537-544, December.
    11. Emilio Zanetti Chini, 2018. "Forecasters’ utility and forecast coherence," CREATES Research Papers 2018-23, Department of Economics and Business Economics, Aarhus University.
    12. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    13. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    14. Vanvyve, Emilie & Delle Monache, Luca & Monaghan, Andrew J. & Pinto, James O., 2015. "Wind resource estimates with an analog ensemble approach," Renewable Energy, Elsevier, vol. 74(C), pages 761-773.
    15. Ganics, Gergely & Odendahl, Florens, 2021. "Bayesian VAR forecasts, survey information, and structural change in the euro area," International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
    16. Akbar Komijani & Nadiya Gandali Alikhani & Esmaeil Naderi, 2013. "The Long-run and Short-run Effects of Crude Oil Price on Methanol Market in Iran," International Journal of Energy Economics and Policy, Econjournals, vol. 3(1), pages 43-50.
    17. Pirschel, Inske, 2015. "Forecasting Euro Area Recessions in real-time with a mixed-frequency Bayesian VAR," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113031, Verein für Socialpolitik / German Economic Association.
    18. Marc Joëts, 2012. "Mood-misattribution effect on energy markets: a biorhythm approach," EconomiX Working Papers 2012-24, University of Paris Nanterre, EconomiX.
    19. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    20. Tsyplakov, Alexander, 2010. "The links between inflation and inflation uncertainty at the longer horizon," MPRA Paper 26908, University Library of Munich, Germany.

    More about this item


    Electricity price forecasting; Futures market; Hedging; Real option Stochastic optimization∙ Valuation;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dui:wpaper:1804. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andreas Fritz (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.