IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1161.html
   My bibliography  Save this paper

Congestion Management in European Power Networks: Criteria to Assess the Available Options

Author

Listed:
  • Karsten Neuhoff
  • Benjamin F. Hobbs
  • David Newbery

Abstract

EU Member States are pursuing large scale investment in renewable generation in order to meet a 2020 target to source 20% of total energy sources by renewables. As the location for this new generation differs from the location of existing generation sources, and is often on the extremities of the electricity network, it will create new flow patterns and transmission needs. While congestion exists between European countries, increasing the penetration of variable sources of energy will change the current cross-border congestion profile. It becomes increasingly important for the power market design to foster the full use of existing transmission capacity and allow for robust operation even in the presence of system congestion. After identifying five criteria that an effective congestion management scheme for European countries will need, this paper critically assess to what extent the various approaches satisfy the requirements.

Suggested Citation

  • Karsten Neuhoff & Benjamin F. Hobbs & David Newbery, 2011. "Congestion Management in European Power Networks: Criteria to Assess the Available Options," Discussion Papers of DIW Berlin 1161, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1161
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.387212.de/dp1161.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bogorad, Cynthia & Huang, William, 2005. "Long-Term Rights for New Resources: A Crucial Missing Ingredient in RTO Markets," The Electricity Journal, Elsevier, vol. 18(7), pages 11-24.
    2. Brunekreeft, Gert & Neuhoff, Karsten & Newbery, David, 2005. "Electricity transmission: An overview of the current debate," Utilities Policy, Elsevier, vol. 13(2), pages 73-93, June.
    3. Lyons, Karen & Fraser, Hamish & Parmesano, Hethie, 2000. "An Introduction to Financial Transmission Rights," The Electricity Journal, Elsevier, vol. 13(10), pages 31-37, December.
    4. Frieder Borggrefe & Karsten Neuhoff, 2011. "Balancing and Intraday Market Design: Options for Wind Integration," Discussion Papers of DIW Berlin 1162, DIW Berlin, German Institute for Economic Research.
    5. Bjorndal, Mette & Jornsten, Kurt, 2007. "Benefits from coordinating congestion management--The Nordic power market," Energy Policy, Elsevier, vol. 35(3), pages 1978-1991, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pär Holmberg and Ewa Lazarczyk, 2015. "Comparison of congestion management techniques: Nodal, zonal and discriminatory pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    2. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, vol. 5(2), pages 1-32, February.
    3. Knaut, Andreas & Paschmann, Martin, 2017. "Decoding Restricted Participation in Sequential Electricity Markets," EWI Working Papers 2017-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 31 Aug 2017.
    4. Bjørndal, Endre & Bjørndal, Mette & Rud, Linda & Alangi, Somayeh Rahimi, 2017. "Market Power Under Nodal and Zonal Congestion Management Techniques," Discussion Papers 2017/14, Norwegian School of Economics, Department of Business and Management Science.
    5. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    6. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    7. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.
    8. Ochoa, Camila & van Ackere, Ann, 2015. "Winners and losers of market coupling," Energy, Elsevier, vol. 80(C), pages 522-534.
    9. Ochoa, Camila & Dyner, Isaac & Franco, Carlos J., 2013. "Simulating power integration in Latin America to assess challenges, opportunities, and threats," Energy Policy, Elsevier, vol. 61(C), pages 267-273.
    10. de Jong, Jacques & Hassel, Arndt & Egenhofer, Christian & Jansen, Jaap & Xu, Zheng, 2017. "Improving the Market for Flexibility in the Electricity Sector," CEPS Papers 13093, Centre for European Policy Studies.
    11. Muireann Á. Lynch & Richard Tol & Mark J. O’Malley, 2014. "Minimising costs and variability of electricity generation by means of optimal electricity interconnection utilisation," Working Paper Series 6814, Department of Economics, University of Sussex Business School.
    12. Jean-Michel Glachant, 2012. "Regulating Networks in the New Economy," Review of Economics and Institutions, Università di Perugia, vol. 3(1).
    13. David M. Newbery, 2012. "Contracting for Wind Generation," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    14. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    15. Egerer, Jonas & Rosellón, Juan & Schill, Wolf-Peter, 2015. "Power System Transformation toward Renewables: An Evaluation of Regulatory Approaches for Network Expansion," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 36(4), pages 105-128.
    16. Sarfati, Mahir & Hesamzadeh, Mohammad Reza & Holmberg, Pär, 2018. "Increase-Decrease Game under Imperfect Competition in Two-stage Zonal Power Markets –​ Part I: Concept Analysis," Working Paper Series 1253, Research Institute of Industrial Economics.
    17. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    18. Adriaan Weijde & Benjamin Hobbs, 2011. "Locational-based coupling of electricity markets: benefits from coordinating unit commitment and balancing markets," Journal of Regulatory Economics, Springer, vol. 39(3), pages 223-251, June.
    19. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.
    20. Emili GRIFELL‐TATJÉ & Kristiaan KERSTENS, 2008. "Incentive Regulation And The Role Of Convexity In Benchmarking Electricity Distribution: Economists Versus Engineers," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 79(2), pages 227-248, June.

    More about this item

    Keywords

    Power market design; integrating renewables; congestion management;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.