IDEAS home Printed from
   My bibliography  Save this paper

Series Estimation of Stochastic Processes: Recent Developments and Econometric Applications



This paper overviews recent developments in series estimation of stochastic processes and some of their applications in econometrics. Underlying this approach is the idea that a stochastic process may under certain conditions be represented in terms of a set of orthonormal basis functions, giving a series representation that involves deterministic functions. Several applications of this series approximation method are discussed. The first shows how a continuous function can be approximated by a linear combination of Brownian motions (BMs), which is useful in the study of the spurious regressions. The second application utilizes the series representation of BM to investigate the effect of the presence of deterministic trends in a regression on traditional unit-root tests. The third uses basis functions in the series approximation as instrumental variables (IVs) to perform efficient estimation of the parameters in cointegrated systems. The fourth application proposes alternative estimators of long-run variances in some econometric models with dependent data, thereby providing autocorrelation robust inference methods in these models. We review some work related to these applications and some ongoing research involving series approximation methods.

Suggested Citation

  • Peter C.B. Phillips & Zhipeng Liao, 2012. "Series Estimation of Stochastic Processes: Recent Developments and Econometric Applications," Cowles Foundation Discussion Papers 1871, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1871

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Phillips, Peter C.B., 2005. "Hac Estimation By Automated Regression," Econometric Theory, Cambridge University Press, vol. 21(01), pages 116-142, February.
    2. Liao, Zhipeng & Phillips, Peter C. B., 2015. "Automated Estimation Of Vector Error Correction Models," Econometric Theory, Cambridge University Press, vol. 31(03), pages 581-646, June.
    3. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    4. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
    5. Sun, Yixiao, 2011. "Robust trend inference with series variance estimator and testing-optimal smoothing parameter," Journal of Econometrics, Elsevier, vol. 164(2), pages 345-366, October.
    6. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," Review of Economic Studies, Oxford University Press, vol. 57(1), pages 99-125.
    7. Xiaohong Chen & . . & Yixiao Sun, 2012. "Sieve inference on semi-nonparametric time series models," CeMMAP working papers CWP06/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Phillips, Peter C. B., 2002. "New unit root asymptotics in the presence of deterministic trends," Journal of Econometrics, Elsevier, vol. 111(2), pages 323-353, December.
    9. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    10. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    11. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    12. Xu Cheng & P eter C. B. Phillips, 2009. "Semiparametric cointegrating rank selection," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 83-104, January.
    13. Cheng, Xu & Phillips, Peter C.B., 2012. "Cointegrating rank selection in models with time-varying variance," Journal of Econometrics, Elsevier, vol. 169(2), pages 155-165.
    14. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    15. Werner Ploberger & Peter C. B. Phillips, 2003. "Empirical Limits for Time Series Econometric Models," Econometrica, Econometric Society, vol. 71(2), pages 627-673, March.
    16. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
    17. Durlauf, Steven N & Phillips, Peter C B, 1988. "Trends versus Random Walks in Time Series Analysis," Econometrica, Econometric Society, vol. 56(6), pages 1333-1354, November.
    18. Phillips, Peter C.B., 2007. "Unit root log periodogram regression," Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hwang, Jungbin & Sun, Yixiao, 2016. "Simple, Robust, and Accurate F and t Tests in Cointegrated Systems," University of California at San Diego, Economics Working Paper Series qt82k1x4rd, Department of Economics, UC San Diego.

    More about this item


    Cointegrated system; HAC estimation; Instrumental variables; Lasso regression; Karhunen-Loeve representation; Long-run variance; Reproducing kernel Hilbert space; Oracle effciency; Orthonormal system; Trend basis;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1871. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.