IDEAS home Printed from
   My bibliography  Save this paper

Representing functional data in reproducing Kernel Hilbert Spaces with applications to clustering and classification


  • González, Javier
  • Muñoz, Alberto


Functional data are difficult to manage for many traditional statistical techniques given their very high (or intrinsically infinite) dimensionality. The reason is that functional data are essentially functions and most algorithms are designed to work with (low) finite-dimensional vectors. Within this context we propose techniques to obtain finitedimensional representations of functional data. The key idea is to consider each functional curve as a point in a general function space and then project these points onto a Reproducing Kernel Hilbert Space with the aid of Regularization theory. In this work we describe the projection method, analyze its theoretical properties and propose a model selection procedure to select appropriate Reproducing Kernel Hilbert spaces to project the functional data.

Suggested Citation

  • González, Javier & Muñoz, Alberto, 2010. "Representing functional data in reproducing Kernel Hilbert Spaces with applications to clustering and classification," DES - Working Papers. Statistics and Econometrics. WS ws102713, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws102713

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Functional data;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws102713. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.