IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws102713.html
   My bibliography  Save this paper

Representing functional data in reproducing Kernel Hilbert Spaces with applications to clustering and classification

Author

Listed:
  • González, Javier
  • Muñoz, Alberto

Abstract

Functional data are difficult to manage for many traditional statistical techniques given their very high (or intrinsically infinite) dimensionality. The reason is that functional data are essentially functions and most algorithms are designed to work with (low) finite-dimensional vectors. Within this context we propose techniques to obtain finitedimensional representations of functional data. The key idea is to consider each functional curve as a point in a general function space and then project these points onto a Reproducing Kernel Hilbert Space with the aid of Regularization theory. In this work we describe the projection method, analyze its theoretical properties and propose a model selection procedure to select appropriate Reproducing Kernel Hilbert spaces to project the functional data.

Suggested Citation

  • González, Javier & Muñoz, Alberto, 2010. "Representing functional data in reproducing Kernel Hilbert Spaces with applications to clustering and classification," DES - Working Papers. Statistics and Econometrics. WS ws102713, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws102713
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/170a2dfe-3bef-478a-bdff-226d8a91d7b6/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ijae, 2003. "Reviews in Brief," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 58(1), March.
    2. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    3. Peter Hall & Céline Vial, 2006. "Assessing the finite dimensionality of functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 689-705, September.
    4. Ijae, 2003. "Reviews in Brief," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 58(2), June.
    5. Pearce, N.D. & Wand, M.P., 2006. "Penalized Splines and Reproducing Kernel Methods," The American Statistician, American Statistical Association, vol. 60, pages 233-240, August.
    6. James G.M. & Sugar C.A., 2003. "Clustering for Sparsely Sampled Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 397-408, January.
    7. J. Gower & P. Legendre, 1986. "Metric and Euclidean properties of dissimilarity coefficients," Journal of Classification, Springer;The Classification Society, vol. 3(1), pages 5-48, March.
    8. Boulesteix Anne-Laure, 2004. "PLS Dimension Reduction for Classification with Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-32, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    2. Casado, David, 2009. "Classification of functional data: a weighted distance approach," DES - Working Papers. Statistics and Econometrics. WS ws093915, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Unnevehr, Laurian & Grace, Delia, 2013. "Aflatoxins: Finding solutions for improved food safety," 2020 vision focus 20, International Food Policy Research Institute (IFPRI).
    4. Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
    5. Wong, Raymond K.W. & Zhang, Xiaoke, 2019. "Nonparametric operator-regularized covariance function estimation for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 131-144.
    6. Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
    7. Antonio Sandu, 2020. "Pandemic - Catalyst of the Virtualization of the Social Space," Postmodern Openings, Editura Lumen, Department of Economics, vol. 11(1Sup2), pages 115-140, May.
    8. Casado, David & López Pintado, Sara, 2008. "A functional data based method for time series classification," DES - Working Papers. Statistics and Econometrics. WS ws087427, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Alonso, Andrés M. & Casado, David & Romo, Juan, 2012. "Supervised classification for functional data: A weighted distance approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2334-2346.
    10. López Pintado, Sara, 2005. "Depth-based classification for functional data," DES - Working Papers. Statistics and Econometrics. WS ws055611, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Prieto, Francisco J. & Rendón, Carolina, 2014. "Independent components techniques based on kurtosis for functional data analysis," DES - Working Papers. Statistics and Econometrics. WS ws141006, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    13. Guohuan Su & Adam Mertel & Sébastien Brosse & Justin M. Calabrese, 2023. "Species invasiveness and community invasibility of North American freshwater fish fauna revealed via trait-based analysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Hongxiao Zhu & Philip J. Brown & Jeffrey S. Morris, 2012. "Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models," Biometrics, The International Biometric Society, vol. 68(4), pages 1260-1268, December.
    15. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    16. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    17. Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
    18. la Grange, Anthony & le Roux, Niël & Gardner-Lubbe, Sugnet, 2009. "BiplotGUI: Interactive Biplots in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(i12).
    19. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    20. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    Keywords

    Functional data;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws102713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.