IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws090804.html
   My bibliography  Save this paper

The international stock pollutant control: a stochastic formulation

Author

Listed:
  • Casas, Omar J.
  • Romera, Rosario

Abstract

In this paper we provide a stochastic dynamic game formulation of the economics of international environmental agreements on the transnational pollution control when the environmental damage arises from stock pollutant that accumulates, for accumulating pollutants such as CO2 in the atmosphere. To improve the cooperative and the noncooperative equilibrium among countries, we propose the criteria of the minimization of the expected discounted total cost. Moreover, we consider Stochastic Dynamic Games formulated as Stochastic Dynamic Programming and Cooperative versus Noncooperative Stochastic Dynamic Games. The performance of the proposed schemes is illustrated by a real data based example.

Suggested Citation

  • Casas, Omar J. & Romera, Rosario, 2009. "The international stock pollutant control: a stochastic formulation," DES - Working Papers. Statistics and Econometrics. WS ws090804, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws090804
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/4f18c26e-1f93-4475-ae3b-63d770f61349/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parkash Chander & Henry Tulkens, 2006. "The Core of an Economy with Multilateral Environmental Externalities," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 153-175, Springer.
    2. Marc Germain & Philippe Toint & Henry Tulkens & Aart Zeeuw, 2006. "Transfers to Sustain Dynamic Core-Theoretic Cooperation in International Stock Pollutant Control," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 251-274, Springer.
    3. Johan Eyckmans & Henry Tulkens, 2006. "Simulating Coalitionally Stable Burden Sharing Agreements for the Climate Change Problem," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 218-249, Springer.
    4. Frederick Ploeg & Aart Zeeuw, 1992. "International aspects of pollution control," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(2), pages 117-139, March.
    5. Parkash Chander & Henry Tulkens, 2006. "A Core-Theoretic Solution for the Design of Cooperative Agreements on Transfrontier Pollution," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 176-193, Springer.
    6. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    7. Keller, Klaus & Bolker, Benjamin M. & Bradford, D.F.David F., 2004. "Uncertain climate thresholds and optimal economic growth," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 723-741, July.
    8. Petrosjan, Leon & Zaccour, Georges, 2003. "Time-consistent Shapley value allocation of pollution cost reduction," Journal of Economic Dynamics and Control, Elsevier, vol. 27(3), pages 381-398, January.
    9. Dechert, W.D. & O'Donnell, S.I., 2006. "The stochastic lake game: A numerical solution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1569-1587.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casas, Omar J. & Romera, Rosario, 2009. "Controlling the international stock pollutant with policies depending on target values," DES - Working Papers. Statistics and Econometrics. WS ws096019, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casas, Omar J. & Romera, Rosario, 2011. "The international stock pollutant control: a stochastic formulation with transfers," DES - Working Papers. Statistics and Econometrics. WS ws112217, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Casas, Omar J. & Romera, Rosario, 2009. "Controlling the international stock pollutant with policies depending on target values," DES - Working Papers. Statistics and Econometrics. WS ws096019, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Germain, Marc & Tulkens, Henry & Magnus, Alphonse, 2010. "Dynamic core-theoretic cooperation in a two-dimensional international environmental model," Mathematical Social Sciences, Elsevier, vol. 59(2), pages 208-226, March.
    4. Johan Eyckmans & Henry Tulkens, 2006. "Simulating Coalitionally Stable Burden Sharing Agreements for the Climate Change Problem," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 218-249, Springer.
    5. Marrouch, W. & Ray Chaudhuri, A., 2011. "International Environmental Agreements in the Presence of Adaptation," Other publications TiSEM 247443ba-1022-47e0-9900-d, Tilburg University, School of Economics and Management.
    6. Marc Germain & Philippe Toint & Henry Tulkens & Aart Zeeuw, 2006. "Transfers to Sustain Dynamic Core-Theoretic Cooperation in International Stock Pollutant Control," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 251-274, Springer.
    7. Michael Finus & Ekko Ierland & Rob Dellink, 2006. "Stability of Climate Coalitions in a Cartel Formation Game," Economics of Governance, Springer, vol. 7(3), pages 271-291, August.
    8. Johan Eyckmans & Michael Finus, 2003. "Coalition Formation in a Global Warming Game: How the Design of Protocols Affects the Success of Environmental Treaty-Making," Energy, Transport and Environment Working Papers Series ete0317, KU Leuven, Department of Economics - Research Group Energy, Transport and Environment.
    9. Porchiung Chou & Cheickna Sylla, 2008. "The formation of an international environmental agreement as a two-stage exclusive cartel formation game with transferable utilities," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 8(4), pages 317-341, December.
    10. Marc GERMAIN & Henry TULKENS & Alphonse MAGNUS, 2009. "Dynamic core-theoretic cooperation in a two-dimensional international environmental model," LIDAM Discussion Papers IRES 2009015, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    11. Johan Eyckmans & Michael Finus, 2006. "New roads to international environmental agreements: the case of global warming," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(4), pages 391-414, December.
    12. Carraro, Carlo & Bosello, Francesco & Buchner, Barbara & Raggi, Davide, 2003. "Can Equity Enhance Efficiency? Some Lessons from Climate Negotiations," CEPR Discussion Papers 3606, C.E.P.R. Discussion Papers.
    13. BRECHET, Thierry & GERARD, François & TULKENS, Henry, 2007. "Climate coalitions: a theoretical and computational appraisal," LIDAM Discussion Papers CORE 2007003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Carlo Carraro & Johan Eyckmans & Michael Finus, 2006. "Optimal transfers and participation decisions in international environmental agreements," The Review of International Organizations, Springer, vol. 1(4), pages 379-396, December.
    15. BRECHET, Thierry & THENIE, Julien & ZEIMES, Thibaut & ZUBER, Stéphane, 2010. "The benefits of cooperation under uncertainty: the case of climate change," LIDAM Discussion Papers CORE 2010062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. GERMAIN, Marc & VAN STEENBERGHE, Vincent, 2001. "Constraining equitable allocations of tradable greenhouse gases emission quotas by acceptability," LIDAM Discussion Papers CORE 2001005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Zili Yang, 2017. "Likelihood of environmental coalitions and the number of coalition members: evidences from an IAM model," Annals of Operations Research, Springer, vol. 255(1), pages 9-28, August.
    18. Michael Finus & Bianca Rundshagen & Johan Eyckmans, 2014. "Simulating a sequential coalition formation process for the climate change problem: first come, but second served?," Annals of Operations Research, Springer, vol. 220(1), pages 5-23, September.
    19. Parilina, Elena M. & Zaccour, Georges, 2022. "Payment schemes for sustaining cooperation in dynamic games," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    20. Carraro, Carlo & Buchner, Barbara & Cersosimo, Igor & Marchiori, Carmen, 2002. "Back to Kyoto? US Participation and the Linkage Between R&D and Climate Cooperation," CEPR Discussion Papers 3299, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    ;

    JEL classification:

    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General
    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws090804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.