IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/48103.html
   My bibliography  Save this paper

Optimal placement of wind farms via quantile constraint learning

Author

Listed:
  • Feng, Wenxiu
  • Alcántara Mata, Antonio
  • Ruiz Mora, Carlos

Abstract

Wind farm placement arranges the size and the location of multiple wind farms within a given region. The power output is highly related to the wind speed on spatial and temporal levels, which can be modeled by advanced data-driven approaches. To this end, we use a probabilistic neural network as a surrogate that accounts for the spatiotemporal correlations of wind speed. This neural network uses ReLU activation functions so that it can be reformulated as mixed-integer linear set of constraints (constraint learning). We embed these constraints into the placement decision problem, formulated as a two-stage stochastic optimization problem. Specifically, conditional quantiles of the total electricity production are regarded as recursive decisions in the second stage. We use real high-resolution regional data from a northern region in Spain. We validate that the constraint learning approach outperforms the classical bilinear interpolation method. Numerical experiments are implemented on risk-averse investors. The results indicate that risk-averse investors concentrate on dominant sites with strong wind, while exhibiting spatial diversification and sensitive capacity spread in non-dominant sites. Furthermore, we show that if we introduce transmission line costs in the problem, risk-averse investors favor locations closer to the substations. On the contrary, risk-neutral investors are willing to move to further locations to achieve higher expected profits. Our results conclude that the proposed novel approach is able to tackle a portfolio of regional wind farm placements and further provide guidance for risk-averse investors.

Suggested Citation

  • Feng, Wenxiu & Alcántara Mata, Antonio & Ruiz Mora, Carlos, 2025. "Optimal placement of wind farms via quantile constraint learning," DES - Working Papers. Statistics and Econometrics. WS 48103, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:48103
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/a71537bd-6452-4d85-80e5-8e1253c49b4e/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Hanyu & Zandehshahvar, Reza & Tanneau, Mathieu & Van Hentenryck, Pascal, 2025. "Weather-informed probabilistic forecasting and scenario generation in power systems," Applied Energy, Elsevier, vol. 384(C).
    2. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    3. Alcántara, Antonio & Ruiz, Carlos, 2024. "Optimal day-ahead offering strategy for large producers based on market price response learning," European Journal of Operational Research, Elsevier, vol. 319(3), pages 891-907.
    4. Fajemisin, Adejuyigbe O. & Maragno, Donato & den Hertog, Dick, 2024. "Optimization with constraint learning: A framework and survey," European Journal of Operational Research, Elsevier, vol. 314(1), pages 1-14.
    5. Cetinay, Hale & Kuipers, Fernando A. & Guven, A. Nezih, 2017. "Optimal siting and sizing of wind farms," Renewable Energy, Elsevier, vol. 101(C), pages 51-58.
    6. Pedersen, Jaap & Weinand, Jann Michael & Syranidou, Chloi & Rehfeldt, Daniel, 2024. "An efficient solver for large-scale onshore wind farm siting including cable routing," European Journal of Operational Research, Elsevier, vol. 317(2), pages 616-630.
    7. Hui Hwang Goh & Gumeng Peng & Dongdong Zhang & Wei Dai & Tonni Agustiono Kurniawan & Kai Chen Goh & Chin Leei Cham, 2022. "A New Wind Speed Scenario Generation Method Based on Principal Component and R-Vine Copula Theories," Energies, MDPI, vol. 15(7), pages 1-21, April.
    8. Katikas, Loukas & Dimitriadis, Panayiotis & Koutsoyiannis, Demetris & Kontos, Themistoklis & Kyriakidis, Phaedon, 2021. "A stochastic simulation scheme for the long-term persistence, heavy-tailed and double periodic behavior of observational and reanalysis wind time-series," Applied Energy, Elsevier, vol. 295(C).
    9. Kang, Dongbum & Ko, Kyungnam & Huh, Jongchul, 2015. "Determination of extreme wind values using the Gumbel distribution," Energy, Elsevier, vol. 86(C), pages 51-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanan Chen & Ming Zhao & Zhengxian Liu & Jianlong Ma & Lei Yang, 2025. "Comparative Analysis of Offshore Wind Resources and Optimal Wind Speed Distribution Models in China and Europe," Energies, MDPI, vol. 18(5), pages 1-51, February.
    2. Siddharth Prasad & Maria-Florina Balcan & Tuomas Sandholm, 2025. "Revenue-Optimal Efficient Mechanism Design with General Type Spaces," Papers 2505.13687, arXiv.org.
    3. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    4. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    5. Rahimiyan, Morteza, 2014. "A statistical cognitive model to assess impact of spatially correlated wind production on market behaviors," Applied Energy, Elsevier, vol. 122(C), pages 62-72.
    6. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & Wood, David A., 2019. "A Layered Uncertainties Scenario Synthesizing (LUSS) model applied to evaluate multiple potential long-run outcomes for Iran's natural gas exports," Energy, Elsevier, vol. 169(C), pages 646-659.
    7. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    8. Kirchner-Bossi, N. & Prieto, L. & García-Herrera, R. & Carro-Calvo, L. & Salcedo-Sanz, S., 2013. "Multi-decadal variability in a centennial reconstruction of daily wind," Applied Energy, Elsevier, vol. 105(C), pages 30-46.
    9. Collado Fernandez, Victor & Méndez, Fernando J. & Mínguez Solana, Roberto, 2025. "Upper-tail sampling correction technique for engineering design," DES - Working Papers. Statistics and Econometrics. WS 46849, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Farhan Hameed Malik & Muhammad Waleed Khan & Tauheed Ur Rahman & Muhammad Ehtisham & Muhammad Faheem & Zunaib Maqsood Haider & Matti Lehtonen, 2024. "A Comprehensive Review on Voltage Stability in Wind-Integrated Power Systems," Energies, MDPI, vol. 17(3), pages 1-36, January.
    11. Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
    12. Pei Du & Yu Jin & Kequan Zhang, 2016. "A Hybrid Multi-Step Rolling Forecasting Model Based on SSA and Simulated Annealing—Adaptive Particle Swarm Optimization for Wind Speed," Sustainability, MDPI, vol. 8(8), pages 1-25, August.
    13. Gerald A. Abantao & Jessa A. Ibañez & Paul Eugene Delfin C. Bundoc & Lean Lorenzo F. Blas & Xaviery N. Penisa & Eugene A. Esparcia & Michael T. Castro & Roger Victor E. Buendia & Karl Ezra S. Pilario , 2024. "Reconceptualizing Reliability Indices as Metrics to Quantify Power Distribution System Resilience," Energies, MDPI, vol. 17(8), pages 1-13, April.
    14. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    15. Deng, Jingchuan & Li, Hongru & Hu, Jinxing & Liu, Zhenyu, 2021. "A new wind speed scenario generation method based on spatiotemporal dependency structure," Renewable Energy, Elsevier, vol. 163(C), pages 1951-1962.
    16. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    17. Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
    18. Saravanan Bhaskaran & Amrit Shankar Verma & Andrew J. Goupee & Subhamoy Bhattacharya & Amir R. Nejad & Wei Shi, 2023. "Comparison of Extreme Wind and Waves Using Different Statistical Methods in 40 Offshore Wind Energy Lease Areas Worldwide," Energies, MDPI, vol. 16(19), pages 1-26, October.
    19. Zhang, Wenyu & Wu, Jie & Wang, Jianzhou & Zhao, Weigang & Shen, Lin, 2012. "Performance analysis of four modified approaches for wind speed forecasting," Applied Energy, Elsevier, vol. 99(C), pages 324-333.
    20. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.

    More about this item

    Keywords

    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:48103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.