IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/46849.html
   My bibliography  Save this paper

Upper-tail sampling correction technique for engineering design

Author

Listed:
  • Collado Fernandez, Victor
  • Méndez, Fernando J.
  • Minguez Solana, Roberto

Abstract

Engineering design must fulfill various requirements to guarantee the safety and functionality of structures. Often, critical conditions are associated with extreme events, such as floods or extreme winds. Therefore, a thorough analysis of these extreme conditions is essential to ensure structural reliability. Typically, designing structures involves generating sampled data based on historical records. However, it is frequent that this sampled data does not accurately represent the extreme-event regime observed historically. To address this issue, it is necessary to introduce an upper-tail sampling correction technique that effectively models extreme regimes, thereby reducing associated risks. This paper proposes a straightforward correction method and demonstrates its application through various examples, illustrating how the methodology aligns sampled extreme values more closely with historical data.

Suggested Citation

  • Collado Fernandez, Victor & Méndez, Fernando J. & Minguez Solana, Roberto, 2025. "Upper-tail sampling correction technique for engineering design," DES - Working Papers. Statistics and Econometrics. WS 46849, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:46849
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/4be5cf4b-9f96-4636-9987-51aa1e13148a/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    2. Mendes, Beatriz Vaz de Melo & Lopes, Hedibert Freitas, 2004. "Data driven estimates for mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 583-598, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahimiyan, Morteza, 2014. "A statistical cognitive model to assess impact of spatially correlated wind production on market behaviors," Applied Energy, Elsevier, vol. 122(C), pages 62-72.
    2. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & Wood, David A., 2019. "A Layered Uncertainties Scenario Synthesizing (LUSS) model applied to evaluate multiple potential long-run outcomes for Iran's natural gas exports," Energy, Elsevier, vol. 169(C), pages 646-659.
    3. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    4. Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
    5. Melo, Gustavo de Andrade & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina & Meira, Erick, 2025. "Exploring complementary effects of solar and wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    6. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
    7. Cristiano Villa, 2017. "Bayesian estimation of the threshold of a generalised pareto distribution for heavy-tailed observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 95-118, March.
    8. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    9. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    10. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    11. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    12. Qin, Li & Liu, Shi & Long, Teng & Shahzad, Muhammad Ali & Schlaberg, H. Inaki & Yan, Song An, 2018. "Wind field reconstruction using dimension-reduction of CFD data with experimental validation," Energy, Elsevier, vol. 151(C), pages 272-288.
    13. Tugce Demirdelen & Pırıl Tekin & Inayet Ozge Aksu & Firat Ekinci, 2019. "The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence," Sustainability, MDPI, vol. 11(17), pages 1-18, September.
    14. Gómez-Pérez, Jesús D. & Latorre-Canteli, Jesus M. & Ramos, Andres & Perea, Alejandro & Sanz, Pablo & Hernández, Francisco, 2024. "Improving operating policies in stochastic optimization: An application to the medium-term hydrothermal scheduling problem," Applied Energy, Elsevier, vol. 359(C).
    15. Gupta, Neeraj, 2016. "Probabilistic load flow with detailed wind generator models considering correlated wind generation and correlated loads," Renewable Energy, Elsevier, vol. 94(C), pages 96-105.
    16. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    17. Douak, Fouzi & Melgani, Farid & Benoudjit, Nabil, 2013. "Kernel ridge regression with active learning for wind speed prediction," Applied Energy, Elsevier, vol. 103(C), pages 328-340.
    18. Ceyhun Yıldız & Mustafa Tekin & Ahmet Gani & Ö. Fatih Keçecioğlu & Hakan Açıkgöz & Mustafa Şekkeli, 2017. "A Day-Ahead Wind Power Scenario Generation, Reduction, and Quality Test Tool," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    19. Zárate-Miñano, Rafael & Anghel, Marian & Milano, Federico, 2013. "Continuous wind speed models based on stochastic differential equations," Applied Energy, Elsevier, vol. 104(C), pages 42-49.
    20. Yanan Chen & Ming Zhao & Zhengxian Liu & Jianlong Ma & Lei Yang, 2025. "Comparative Analysis of Offshore Wind Resources and Optimal Wind Speed Distribution Models in China and Europe," Energies, MDPI, vol. 18(5), pages 1-51, February.

    More about this item

    Keywords

    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:46849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.