IDEAS home Printed from https://ideas.repec.org/p/cla/levrem/843644000000000039.html
   My bibliography  Save this paper

Mediators Enable Truthful Voting

Author

Listed:
  • Bezalel Peleg
  • Ariel D Procaccia

Abstract

The Gibbard-Satterthwaite Theorem asserts the impossibility of designing a non-dictatorial voting rule in which truth-telling always constitutes a Nash equilibrium. We show that in voting games of complete information where a mediator is on hand, this troubling impossibility result can be alleviated. Indeed, we characterize families of voting rules where, given a mediator, truthful preference revelation is always in strong equilibrium. In particular, we observe that the family of feasible elimination procedures has the foregoing property.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Bezalel Peleg & Ariel D Procaccia, 2007. "Mediators Enable Truthful Voting," Levine's Bibliography 843644000000000039, UCLA Department of Economics.
  • Handle: RePEc:cla:levrem:843644000000000039
    as

    Download full text from publisher

    File URL: http://ratio.huji.ac.il/dp_files/dp451.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peleg,Bezalel, 2008. "Game Theoretic Analysis of Voting in Committees," Cambridge Books, Cambridge University Press, number 9780521074650, September.
    2. Bezalel Peleg, 1997. "Effectivity functions, game forms, games, and rights," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(1), pages 67-80.
    3. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    4. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bezalel Peleg & Ariel Procaccia, 2010. "Implementation by mediated equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 191-207, March.
    2. Peleg, Bezalel & Peters, Hans, 2017. "Feasible elimination procedures in social choice: An axiomatic characterization," Research in Economics, Elsevier, vol. 71(1), pages 43-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maskin, Eric & Sjostrom, Tomas, 2002. "Implementation theory," Handbook of Social Choice and Welfare, in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 1, chapter 5, pages 237-288, Elsevier.
    2. Maskin, Eric & Sjostrom, Tomas, 2002. "Implementation theory," Handbook of Social Choice and Welfare,in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 1, chapter 5, pages 237-288 Elsevier.
    3. Salvador Barberà & Dolors Berga & Bernardo Moreno, 2012. "Group strategy-proof social choice functions with binary ranges and arbitrary domains: characterization results," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 791-808, November.
    4. Murat R. Sertel & M. Remzi Sanver, 2004. "Strong equilibrium outcomes of voting games ¶are the generalized Condorcet winners," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 22(2), pages 331-347, April.
    5. Lirong Xia, 2020. "How Likely Are Large Elections Tied?," Papers 2011.03791, arXiv.org, revised Jul 2021.
    6. Barbera, S. & Bossert, W. & Pattanaik, P.K., 2001. "Ranking Sets of Objects," Cahiers de recherche 2001-02, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Souvik Roy & Soumyarup Sadhukhan, 2019. "A characterization of random min–max domains and its applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 887-906, November.
    8. Mizukami, Hideki & Saijo, Tatsuyoshi & Wakayama, Takuma, 2003. "Strategy-Proof Sharing," Working Papers 1170, California Institute of Technology, Division of the Humanities and Social Sciences.
    9. Bruno Frey, 2011. "Tullock challenges: happiness, revolutions, and democracy," Public Choice, Springer, vol. 148(3), pages 269-281, September.
    10. Takamiya, Koji, 2001. "Coalition strategy-proofness and monotonicity in Shapley-Scarf housing markets," Mathematical Social Sciences, Elsevier, vol. 41(2), pages 201-213, March.
    11. Burak Can & Peter Csoka & Emre Ergin, 2017. "How to choose a non-manipulable delegation?," CERS-IE WORKING PAPERS 1713, Institute of Economics, Centre for Economic and Regional Studies.
    12. Roy, Souvik & Storcken, Ton, 2019. "A characterization of possibility domains in strategic voting," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 46-55.
    13. Bezalel Peleg & Hans Peters, 2010. "Consistent voting systems with a continuum of voters," Studies in Choice and Welfare, in: Strategic Social Choice, chapter 0, pages 123-145, Springer.
    14. Berghammer, Rudolf & Schnoor, Henning, 2015. "Control of Condorcet voting: Complexity and a Relation-Algebraic approach," European Journal of Operational Research, Elsevier, vol. 246(2), pages 505-516.
    15. Benoît R. Kloeckner, 2022. "Cycles in synchronous iterative voting: general robustness and examples in Approval Voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(2), pages 423-466, August.
    16. António Osório, 2020. "Performance Evaluation: Subjectivity, Bias and Judgment Style in Sport," Group Decision and Negotiation, Springer, vol. 29(4), pages 655-678, August.
    17. Boniface Mbih & Issofa Moyouwou & Abdoul Aziz Ndiaye, 2009. "Parliamentary voting rules and strategic candidacy," Economics Bulletin, AccessEcon, vol. 29(2), pages 1371-1379.
    18. Kentaro Hatsumi & Dolors Berga & Shigehiro Serizawa, 2014. "A maximal domain for strategy-proof and no-vetoer rules in the multi-object choice model," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 153-168, February.
    19. Michel Breton & Vera Zaporozhets, 2009. "On the equivalence of coalitional and individual strategy-proofness properties," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 287-309, August.
    20. Ehud Kalai & Zvi Ritz, 1978. "An Extended Single Peak Condition in Social Choice," Discussion Papers 325, Northwestern University, Center for Mathematical Studies in Economics and Management Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cla:levrem:843644000000000039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David K. Levine (email available below). General contact details of provider: http://www.dklevine.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.