IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Exact Nonparametric Two-Sample Homogeneity Tests for Possibly Discrete Distributions

  • Jean-Marie Dufour
  • Abdeljelil Farhat

In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests which are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements. Dans ce texte, nous étudions plusieurs tests pour l'egalité de deux distributions inconnues. Deux de ces tests sont basés sur des fonctions de distribution empiriques, trois autres sur des estimateurs non-paramétriques de fonctions de densité, et les trois derniers sur des moments empiriques. Nous proposons de contrôler la taille des tests (sous des hypothèses non-paramétriques) en employant des versions permutationnelles de ces tests conjointement avec la méthode des tests de Monte Carlo ajustée pour tenir compte de la possibilité de distributions discontinues. Nous proposons aussi une méthode pour combiner plusieurs de ces tests, le niveau de ces procédures étant aussi contrôlé par la technique des tests de Monte Carlo, laquelle possède de meilleures propriétés de puissance que les tests individuels combinés. Finalement, nous montrons dans une étude de simulation que la technique suggérée contrôle parfaitement la taille des différents tests considérés et que les nouveaux tests proposés peuvent fournir de notables améliorations de puissance.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/2001s-56.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2001s-56.

as
in new window

Length: 29 pages
Date of creation: 01 Oct 2001
Date of revision:
Handle: RePEc:cir:cirwor:2001s-56
Contact details of provider: Postal: 1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Dufour, J.M. & Kiviet, J.F., 1995. "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models," Cahiers de recherche 9547, Universite de Montreal, Departement de sciences economiques.
  2. Jean-Marie Dufour & Olivier Torrès, 2000. "Markovian Processes, Two-Sided Autoregressions and Finite-Sample Inference for Stationary and Nonstationary Autoregressive Processes," CIRANO Working Papers 2000s-17, CIRANO.
  3. DUFOUR, Jean-Marie & FARHAT, Abdeljelil & GARDIOL, Lucien, 1998. "Simulation-Based Finite-Sample Normality Tests in Linear Regressions," Cahiers de recherche 9811, Universite de Montreal, Departement de sciences economiques.
  4. DUFOUR, Jean-Marie, 2005. "Monte Carlo Tests with Nuisance Parameters: A General Approach to Finite-Sample Inference and Nonstandard Asymptotics," Cahiers de recherche 03-2005, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  5. Dufour, Jean-Marie, 1989. "Nonlinear Hypotheses, Inequality Restrictions, and Non-nested Hypotheses: Exact Simultaneous Tests in Linear Regressions," Econometrica, Econometric Society, vol. 57(2), pages 335-55, March.
  6. Kiviet, Jan F. & Dufour, Jean-Marie, 1997. "Exact tests in single equation autoregressive distributed lag models," Journal of Econometrics, Elsevier, vol. 80(2), pages 325-353, October.
  7. G. Noether, 1963. "Note on the kolmogorov statistic in the discrete case," Metrika, Springer, vol. 7(1), pages 115-116, December.
  8. Dufour, J.-M., 1986. "Exact tests and confidence sets in linear regressions with autocorrelated errors," CORE Discussion Papers 1986037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2001s-56. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.