IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Markovian processes, two-sided autoregressions and finite-sample inference for stationary and nonstationary autoregressive processes

  • Dufour, Jean-Marie
  • Torres, Olivier

In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method. Dans cet article, nous proposons des procédures d'inférence valides à distance finie pour des modèles autorégressifs (AR) stationnaires et non-stationnaires. La méthode suggérée est fondée sur des propriétés particulières des processus markoviens combinées à une technique de subdivision d'échantillon. Les résultats sur les processus de Markov (indépendance intercalaire, troncature) ne requièrent que l'existence de densités conditionnelles. Nous démontrons les propriétés requises pour des processus markoviens multivariés possiblement non-stationnaires et non-gaussiens. Pour le cas des modèles de régression linéaires avec erreurs autorégressives d'ordre un, nous montrons comment utiliser ces résultats afin de simplifier les propriétés distributionnelles du modèle en considérant la distribution conditionnelle d'une

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 99 (2000)
Issue (Month): 2 (December)
Pages: 255-289

in new window

Handle: RePEc:eee:econom:v:99:y:2000:i:2:p:255-289
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Dufour, J.M. & Kiviet, J.F., 1995. "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models," Cahiers de recherche 9547, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  2. DeJong, David N. & Nankervis, John C. & Savin, N. E. & Whiteman, Charles H., 1992. "The power problems of unit root test in time series with autoregressive errors," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 323-343.
  3. Park, Rolla Edward & Mitchell, Bridger M., 1980. "Estimating the autocorrelated error model with trended data," Journal of Econometrics, Elsevier, vol. 13(2), pages 185-201, June.
  4. Campbell, B. & Dufour, J.M., 1994. "Excat Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter," Cahiers de recherche 9407, Universite de Montreal, Departement de sciences economiques.
  5. Kiviet, Jan F. & Dufour, Jean-Marie, 1997. "Exact tests in single equation autoregressive distributed lag models," Journal of Econometrics, Elsevier, vol. 80(2), pages 325-353, October.
  6. Savin, N.E. & Wurtz, A., 1996. "The Effect of Nuisance Parameters on the Power of LM Tests in Logit and Probit Models," Working Papers 96-05, University of Iowa, Department of Economics.
  7. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  8. Craig Burnside & Martin Eichenbaum, 1994. "Small Sample Properties of Generalized Method of Moments Based Wald Tests," NBER Technical Working Papers 0155, National Bureau of Economic Research, Inc.
  9. Nankervis, John C & Savin, N E, 1996. "The Level and Power of the Bootstrap t Test in the AR(1) Model with Trend," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 161-68, April.
  10. Dufour, Jean-Marie & Kiviet, Jan F., 1996. "Exact tests for structural change in first-order dynamic models," Journal of Econometrics, Elsevier, vol. 70(1), pages 39-68, January.
  11. Maasoumi, Esfandiar, 1992. "Fellow's opinion : Rules of thumb and pseudo-science," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 1-4.
  12. Marc Hallin & Jean-Marie Dufour & Ivan Mizera, 1998. "Generalized run tests for heteroscedastic time series," ULB Institutional Repository 2013/2077, ULB -- Universite Libre de Bruxelles.
  13. Dufour, J.-M., 1986. "Exact tests and confidence sets in linear regressions with autocorrelated errors," CORE Discussion Papers 1986037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  14. Dufour, J.-M., 1986. "Nonlinear hypotheses, inequality restrictions and non-nested hypotheses: Exact simultaneous tests in linear regressions," CORE Discussion Papers 1986016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  15. Miyazaki, Shigetaka & Griffiths, William E., 1984. "The properties of some covariance matrix estimators in linear models with AR(1) errors," Economics Letters, Elsevier, vol. 14(4), pages 351-356.
  16. Burnside, Craig & Eichenbaum, Martin S, 1996. "Small-Sample Properties of GMM-Based Wald Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 294-308, July.
  17. Savin, N.E., 1984. "Multiple hypothesis testing," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 14, pages 827-879 Elsevier.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:99:y:2000:i:2:p:255-289. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.