IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Finite-Sample Diagnostics for Multivariate Regressions with Applications to Linear Asset Pricing Models

  • Jean-Marie Dufour
  • Lynda Khalaf
  • Marie-Claude Beaulieu

In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the "maximized MC"" (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the tests significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error crossequation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors." Dans cet article, nous proposons plusieurs tests de spécification valides pour des échantillons finis dans le cadre de régression linéaires multivariées (RLM), avec des applications à des modèles d'évaluation d'actifs. Nous nous concentrons sur les déviations par rapport à l'hypothèse d'erreurs i.i.d. univariée ou multivariée, pour des distributions d'erreurs gaussiennes et non gaussiennes. Les tests univariés étudiés prolongent les procédures exactes existantes en permettant des paramètres non spécifiés dans la distribution des erreurs (e.g., le nombre de degrés de liberté dans le cas de la distribution de Student). Les tests multivariés sont basés sur des résidus standardisés multivariés qui assurent l'invariance par rapport aux coefficients RLM et à ceux de la matrice de covariance des erreurs. Nous considérons des tests contre la dépendance sérielle, contre la présence d'effets GARCH multivariés et des tests de signes contre l'asymétrie. Les procédures proposées sont des versions exactes des tests de Shanken (1990) qui consistent à combiner des tests de spécification univariés. Spécifiquement, nous combinons des tests entre équations en utilisant une approche de test de Monte Carlo (MC), ce qui permet d'éviter des bornes de type Bonferroni. Étant donné que les tests dans un contexte non gaussien ne sont pas pivotaux, nous appliquons une approche de test de Monte Carlo maximisé [Dufour (2002)] où la valeur p simulée pour l'hypothèse testée (qui dépend de paramètres de nuisance) est maximisée (par rapport aux dits paramètres de nuisance) dans le but de contrôler le niveau des tests. Nous appliquons les tests proposés à un modèle d'évaluation d'actifs qui comprend un taux d'intérêt sans risque observable et utilise les rendements de portefeuilles mensuels de titres inscrits à la bourse de New York, sur des sous-périodes de cinq ans allant de janvier 1926 à décembre 1995. Nos résultats révèlent que les tests univariés exacts présentent des problèmes de dépendance sérielle, d'asymétrie et d'effets GARCH statistiquement significatifs dans certaines équations. Cependant ces problèmes s'avèrent moins importants, lorsque l'on tient compte de la dépendance entre équations. De plus, les écarts importants par rapport à l'hypothèse i.i.d. sont moins évidents une fois que l'on considère des erreurs non gaussiennes.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/2003s-34.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2003s-34.

as
in new window

Length: 36 pages
Date of creation: 01 Apr 2003
Date of revision:
Handle: RePEc:cir:cirwor:2003s-34
Contact details of provider: Postal: 1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Andrew W. Lo & A. Craig MacKinlay, 1987. "Stock Market Prices Do Not Follow Random Walks: Evidence From a Simple Specification Test," NBER Working Papers 2168, National Bureau of Economic Research, Inc.
  2. DUFOUR, Jean-Marie & FARHAT, Abdeljelil & GARDIOL, Lucien, 1998. "Simulation-Based Finite-Sample Normality Tests in Linear Regressions," Cahiers de recherche 9811, Universite de Montreal, Departement de sciences economiques.
  3. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
  4. Fama, Eugene F & French, Kenneth R, 1995. " Size and Book-to-Market Factors in Earnings and Returns," Journal of Finance, American Finance Association, vol. 50(1), pages 131-55, March.
  5. DUFOUR, Jean-Marie & KHALAF, Lynda, 2000. "Exact Tests for Contemporaneous Correlation of Disturbances in Seemingly Unrelated Regressions," Cahiers de recherche 2000-11, Universite de Montreal, Departement de sciences economiques.
  6. Jobson, J. D. & Korkie, Bob, 1982. "Potential performance and tests of portfolio efficiency," Journal of Financial Economics, Elsevier, vol. 10(4), pages 433-466, December.
  7. Jean-Thomas Bernard & Jean-Marie Dufour & Ian Genest & Lynda Khalaf, 2001. "Simulation-Based Finite-Sample Tests for Heteroskedasticity and ARCH Effects," CIRANO Working Papers 2001s-25, CIRANO.
  8. Dufour, J.M. & Kiviet, J.F., 1995. "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models," Cahiers de recherche 9547, Universite de Montreal, Departement de sciences economiques.
  9. Zhou, Guofu, 1991. "Small sample tests of portfolio efficiency," Journal of Financial Economics, Elsevier, vol. 30(1), pages 165-191, November.
  10. Dufour, Jean-Marie & Kiviet, Jan F., 1996. "Exact tests for structural change in first-order dynamic models," Journal of Econometrics, Elsevier, vol. 70(1), pages 39-68, January.
  11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  12. Affleck-Graves, John & McDonald, Bill, 1989. " Nonnormalities and Tests of Asset Pricing Theories," Journal of Finance, American Finance Association, vol. 44(4), pages 889-908, September.
  13. Dufour, Jean-Marie & Khalaf, Lynda, 2002. "Simulation based finite and large sample tests in multivariate regressions," Journal of Econometrics, Elsevier, vol. 111(2), pages 303-322, December.
  14. Shanken, Jay, 1986. " Testing Portfolio Efficiency When the Zero-Beta Rate Is Unknown: A Note," Journal of Finance, American Finance Association, vol. 41(1), pages 269-76, March.
  15. Chou, Pin-Huang, 2000. "Alternative Tests of the Zero-Beta CAPM," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 23(4), pages 469-93, Winter.
  16. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  17. Dufour, Jean-Marie, 1990. "Exact Tests and Confidence Sets in Linear Regressions with Autocorrelated Errors," Econometrica, Econometric Society, vol. 58(2), pages 475-94, March.
  18. Shanken, Jay, 1990. "Intertemporal asset pricing : An Empirical Investigation," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 99-120.
  19. Kenneth Stewart, 1997. "Exact testing in multivariate regression," Econometric Reviews, Taylor & Francis Journals, vol. 16(3), pages 321-352.
  20. Jean-Marie Dufour & Lynda Khalaf & Marie-Claude Beaulieu, 2003. "Exact Skewness-Kurtosis Tests for Multivariate Normality and Goodness-of-Fit in Multivariate Regressions with Application to Asset Pricing Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 891-906, December.
  21. Godfrey, Leslie G., 1996. "Some results on the Glejser and Koenker tests for heteroskedasticity," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 275-299.
  22. Harvey, Andrew C & Phillips, Garry D A, 1982. "Testing for Contemporaneous Correlation of Disturbances in Systems of Regression Equations," Bulletin of Economic Research, Wiley Blackwell, vol. 34(2), pages 79-91, November.
  23. Raymond Kan & Guofu Zhou, 2001. "Tests of Mean-Variance Spanning," CEMA Working Papers 539, China Economics and Management Academy, Central University of Finance and Economics.
  24. Zhou, Guofu, 1995. "Small sample rank tests with applications to asset pricing," Journal of Empirical Finance, Elsevier, vol. 2(1), pages 71-93, March.
  25. Richardson, Matthew & Smith, Tom, 1993. "A Test for Multivariate Normality in Stock Returns," The Journal of Business, University of Chicago Press, vol. 66(2), pages 295-321, April.
  26. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
  27. Gibbons, Michael R., 1982. "Multivariate tests of financial models : A new approach," Journal of Financial Economics, Elsevier, vol. 10(1), pages 3-27, March.
  28. repec:cup:etheor:v:11:y:1995:i:1:p:122-50 is not listed on IDEAS
  29. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-44.
  30. Jobson, J. D. & Korkie, Bob, 1989. "A Performance Interpretation of Multivariate Tests of Asset Set Intersection, Spanning, and Mean-Variance Efficiency," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(02), pages 185-204, June.
  31. Lee, John H. H., 1991. "A Lagrange multiplier test for GARCH models," Economics Letters, Elsevier, vol. 37(3), pages 265-271, November.
  32. Gibbons, Michael R & Ross, Stephen A & Shanken, Jay, 1989. "A Test of the Efficiency of a Given Portfolio," Econometrica, Econometric Society, vol. 57(5), pages 1121-52, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2003s-34. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.