IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_11124.html
   My bibliography  Save this paper

Algorithmic Cooperation

Author

Listed:
  • Bernhard Kasberger
  • Simon Martin
  • Hans-Theo Normann
  • Tobias Werner

Abstract

Algorithms play an increasingly important role in economic situations. These situations are often strategic, where the artificial intelligence may or may not be cooperative. We study the deter-minants and forms of algorithmic cooperation in the infinitely repeated prisoner’s dilemma. We run a sequence of computational experiments, accompanied by additional repeated prisoner’s dilemma games played by humans in the lab. We find that the same factors that increase human cooperation largely also determine the cooperation rates of algorithms. However, algorithms tend to play different strategies than humans. Algorithms cooperate less than humans when cooperation is very risky or not incentive-compatible.

Suggested Citation

  • Bernhard Kasberger & Simon Martin & Hans-Theo Normann & Tobias Werner, 2024. "Algorithmic Cooperation," CESifo Working Paper Series 11124, CESifo.
  • Handle: RePEc:ces:ceswps:_11124
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp11124.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, April.
    2. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    3. Green, Edward J & Porter, Robert H, 1984. "Noncooperative Collusion under Imperfect Price Information," Econometrica, Econometric Society, vol. 52(1), pages 87-100, January.
    4. Matthias Hettich, 2021. "Algorithmic Collusion: Insights from Deep Learning," CQE Working Papers 9421, Center for Quantitative Economics (CQE), University of Muenster.
    5. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    6. Maria Bigoni & Marco Casari & Andrzej Skrzypacz & Giancarlo Spagnolo, 2015. "Time Horizon and Cooperation in Continuous Time," Econometrica, Econometric Society, vol. 83, pages 587-616, March.
    7. J. Keith Murnighan & Alvin E. Roth, 1983. "Expecting Continued Play in Prisoner's Dilemma Games," Journal of Conflict Resolution, Peace Science Society (International), vol. 27(2), pages 279-300, June.
    8. Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
    9. Joseph E Harrington, 2018. "Developing Competition Law For Collusion By Autonomous Artificial Agents," Journal of Competition Law and Economics, Oxford University Press, vol. 14(3), pages 331-363.
    10. Zach Y. Brown & Alexander MacKay, 2023. "Competition in Pricing Algorithms," American Economic Journal: Microeconomics, American Economic Association, vol. 15(2), pages 109-156, May.
    11. Pedro Dal Bó, 2005. "Cooperation under the Shadow of the Future: Experimental Evidence from Infinitely Repeated Games," American Economic Review, American Economic Association, vol. 95(5), pages 1591-1604, December.
    12. Drew Fudenberg & David G. Rand & Anna Dreber, 2012. "Slow to Anger and Fast to Forgive: Cooperation in an Uncertain World," American Economic Review, American Economic Association, vol. 102(2), pages 720-749, April.
    13. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    14. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    15. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    16. Yves Breitmoser, 2015. "Cooperation, but No Reciprocity: Individual Strategies in the Repeated Prisoner's Dilemma," American Economic Review, American Economic Association, vol. 105(9), pages 2882-2910, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Normann, Hans-Theo & Sternberg, Martin, 2022. "Human-algorithm interaction: Algorithmic pricing in hybrid laboratory markets," DICE Discussion Papers 392, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    2. Normann, Hans-Theo & Sternberg, Martin, 2023. "Human-algorithm interaction: Algorithmic pricing in hybrid laboratory markets," European Economic Review, Elsevier, vol. 152(C).
    3. Hans-Theo Normann & Martin Sternberg, 2021. "Human-Algorithm Interaction: Algorithmic Pricing in Hybrid Laboratory Markets," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2021_11, Max Planck Institute for Research on Collective Goods, revised 13 Apr 2022.
    4. Werner, Tobias, 2021. "Algorithmic and human collusion," DICE Discussion Papers 372, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    5. Werner, Tobias, 2023. "Algorithmic and Human Collusion," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277573, Verein für Socialpolitik / German Economic Association.
    6. Heller, Yuval & Tubul, Itay, 2023. "Strategies in the repeated prisoner’s dilemma: A cluster analysis," MPRA Paper 117444, University Library of Munich, Germany.
    7. Fabian Dvorak & Sebastian Fehrler, 2024. "Negotiating Cooperation under Uncertainty: Communication in Noisy, Indefinitely Repeated Interactions," American Economic Journal: Microeconomics, American Economic Association, vol. 16(3), pages 232-258, August.
    8. Epivent, Andréa & Lambin, Xavier, 2024. "On algorithmic collusion and reward–punishment schemes," Economics Letters, Elsevier, vol. 237(C).
    9. Timo Klein, 2021. "Autonomous algorithmic collusion: Q‐learning under sequential pricing," RAND Journal of Economics, RAND Corporation, vol. 52(3), pages 538-558, September.
    10. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    11. Gonzalo Ballestero, 2021. "Collusion and Artificial Intelligence: A computational experiment with sequential pricing algorithms under stochastic costs," Young Researchers Working Papers 1, Universidad de San Andres, Departamento de Economia, revised Oct 2022.
    12. Yutaka Kayaba & Hitoshi Matsushima & Tomohisa Toyama, 2016. "Accuracy and Retaliation in Repeated Games with Imperfect Private Monitoring: Experiments and Theory," CARF F-Series CARF-F-381, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    14. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    15. Dolgopolov, Arthur, 2024. "Reinforcement learning in a prisoner's dilemma," Games and Economic Behavior, Elsevier, vol. 144(C), pages 84-103.
    16. Colombo, Stefano & Filippini, Luigi & Pignataro, Aldo, 2024. "Information sharing, personalized pricing, and collusion," Information Economics and Policy, Elsevier, vol. 66(C).
    17. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    18. Fourberg, Niklas & Marques Magalhaes, Katrin & Wiewiorra, Lukas, 2023. "They Are Among Us: Pricing Behavior of Algorithms in the Field," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277958, International Telecommunications Society (ITS).
    19. Gonzalo Ballestero, 2022. "Collusion and Artificial Intelligence: A Computational Experiment with Sequential Pricing Algorithms under Stochastic Costs," Working Papers 118, Red Nacional de Investigadores en Economía (RedNIE).
    20. Inkoo Cho & Noah Williams, 2024. "Collusive Outcomes Without Collusion," Papers 2403.07177, arXiv.org.

    More about this item

    Keywords

    artificial intelligence; cooperation; large language models; Q-learning; repeated prisoner’s dilemma;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_11124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.