IDEAS home Printed from
   My bibliography  Save this paper

Efficient Inference on Fractionally Integrated Panel Data Models with Fixed Effects


  • Peter M Robinson
  • Carlos Velasco


A dynamic panel data model is considered that contains possibly stochastic individual components and a common fractional stochastic time trend. We propose four different ways of coping with the individual effects so as to estimate the fractional parameter. Like models with autoregressive dynamics, ours nests a unit root, but unlike the nonstandard asymptotics in the autoregressive case, estimates of the fractional parameter can be asymptotically normal. Establishing this property is made difficult due to bias caused by the individual effects, or by the consequences of eliminating them, and requires the number of time series observations T to increase, while the cross-sectional size, N; can either remain fi xed or increase with T: The biases in the central limit theorem are asymptotically negligible only under stringent conditions on the growth of N relative to T; but these can be relaxed by bias correction. For three of the estimates the biases depend only on the fractional parameter. In hypothesis testing, bias correction of the estimates is readily carried out. We evaluate the biases numerically for a range of T and parameter values, develop and justify feasible bias-corrected estimates, and briefly discuss implied but less effective corrections. A Monte Carlo study of finite-sample performance is included.

Suggested Citation

  • Peter M Robinson & Carlos Velasco, 2013. "Efficient Inference on Fractionally Integrated Panel Data Models with Fixed Effects," STICERD - Econometrics Paper Series 567, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:567

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    2. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    3. Han, Chirok & Phillips, Peter C. B., 2010. "Gmm Estimation For Dynamic Panels With Fixed Effects And Strong Instruments At Unity," Econometric Theory, Cambridge University Press, vol. 26(01), pages 119-151, February.
    4. Uwe Hassler & Matei Demetrescu & Adina Tarcolea, 2011. "Asymptotic normal tests for integration in panels with cross-dependent units," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 187-204, June.
    5. Robinson, Peter M., 2012. "Nonparametric trending regression with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 169(1), pages 4-14.
    6. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Carlos Vladimir Rodríguez-Caballero, 2016. "Panel Data with Cross-Sectional Dependence Characterized by a Multi-Level Factor Structure," CREATES Research Papers 2016-31, Department of Economics and Business Economics, Aarhus University.
    2. Yunus Emre Ergemen, 2016. "Generalized Efficient Inference on Factor Models with Long-Range Dependence," CREATES Research Papers 2016-05, Department of Economics and Business Economics, Aarhus University.
    3. Ergemen, Yunus Emre & Velasco, Carlos, 2017. "Estimation of fractionally integrated panels with fixed effects and cross-section dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 248-258.

    More about this item


    Panel data; Fractional time series; Estimation; Testing; Bias correction;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:567. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.