IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt4qp5m2kr.html
   My bibliography  Save this paper

Investigating Hydrogen Station Use and Station Access in California Using a Survey of Fuel Cell Vehicle Drivers

Author

Listed:
  • Hardman, Scott PhD
  • Davis, Adam PhD
  • Tal, Gil PhD

Abstract

California has set a goal of reaching 100% zero emission vehicle (ZEV) sales by 2035. Most ZEV sales to date have been battery electric vehicles (BEVs) or plug-in hybrid electric vehicles (PHEVs), while fuel cell electric vehicles (FCEVs) make up only a small portion of ZEV sales. The market for FCEVs may be partially constrained because, unlike BEVs and PHEVs, they cannot use any existing infrastructure. This research investigates FCEV drivers use of hydrogen stations in California (of which there are 47 in operation) with the goal of informing the development of hydrogen infrastructure. Hydrogen station use was studied using results from a 2017 survey of 395 fuel cell electric vehicle (FCEV) owners and a 2018 survey of 328 FCEV owners. The results show FCEV drivers use on average 2.4 hydrogen stations. The average shortest distance FCEV owners would need to travel from home, work, or their commute to a hydrogen refueling station was 10 miles. Those whose most-used station was not the closest station available were more likely than those whose most-used station was the closest to use renewable hydrogen, suggesting that some drivers may prefer renewable hydrogen. Currently the percentage of California census block groups with one, two, and three hydrogen stations within 10 miles of households are 52.4%, 25.6%, and 22.5%; these census block groups are concentrated primarily in large metropolitan areas. Finally, 70% of FCEV owners said they would not have purchased the vehicle if their primary station had not been available, pointing the importance of station availability to FCEV adoption.

Suggested Citation

  • Hardman, Scott PhD & Davis, Adam PhD & Tal, Gil PhD, 2022. "Investigating Hydrogen Station Use and Station Access in California Using a Survey of Fuel Cell Vehicle Drivers," Institute of Transportation Studies, Working Paper Series qt4qp5m2kr, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt4qp5m2kr
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/4qp5m2kr.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelley, Scott & Krafft, Aimee & Kuby, Michael & Lopez, Oscar & Stotts, Rhian & Liu, Jingteng, 2020. "How early hydrogen fuel cell vehicle adopters geographically evaluate a network of refueling stations in California," Journal of Transport Geography, Elsevier, vol. 89(C).
    2. Vishnu Vijayakumar & Alan Jenn & Lewis Fulton, 2021. "Low Carbon Scenario Analysis of a Hydrogen-Based Energy Transition for On-Road Transportation in California," Energies, MDPI, vol. 14(21), pages 1-27, November.
    3. repec:cdl:itsrrp:qt20c342sp is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwon, Kihyun, 2025. "Investigating the characteristics of public electric vehicle charging station: A case study of California," Transport Policy, Elsevier, vol. 166(C), pages 101-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariano Gallo & Mario Marinelli, 2023. "The Use of Hydrogen for Traction in Freight Transport: Estimating the Reduction in Fuel Consumption and Emissions in a Regional Context," Energies, MDPI, vol. 16(1), pages 1-20, January.
    2. Mahmutoğulları, Özlem & Yaman, Hande, 2024. "Mathematical formulations for the multi-period alternative fuel refueling station location problem with routing under decision-dependent flow dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    3. Nithin Isaac & Akshay K. Saha, 2023. "A Review of the Optimization Strategies and Methods Used to Locate Hydrogen Fuel Refueling Stations," Energies, MDPI, vol. 16(5), pages 1-16, February.
    4. Liu, Meng & He, Sylvia Y., 2025. "E-taxi drivers' charging behavior: Effects of the built environment, temporal factors, and ridership," Journal of Transport Geography, Elsevier, vol. 123(C).
    5. Pemberton, Simon & Nobajas, Alexandre & Waller, Richard, 2021. "Rapid charging provision, multiplicity and battery electric vehicle (BEV) mobility in the UK," Journal of Transport Geography, Elsevier, vol. 95(C).
    6. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    7. Huan, Ning & Yamamoto, Toshiyuki & Sato, Hitomi & Sala, Roser & Goncalves, Lila, 2024. "Perceptions to connections: A multidimensional investigation of hydrogen acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    8. José A. Ventura, 2023. "Climate Benefits Advocated by the Development of Sustainable Vehicles and Charging Infrastructures in the Transport Sector," Energies, MDPI, vol. 16(9), pages 1-5, April.
    9. Mariano Gallo & Mario Marinelli, 2022. "The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO 2 Emissions: The Case of Italy," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    10. Shuhei NISHITATENO, 2025. "Hydrogen Infrastructure, Fuel Cell Electric Vehicles, and Indirect Network Effects: Evidence from Japan," Discussion papers 25045, Research Institute of Economy, Trade and Industry (RIETI).
    11. Bigestans, Davis & Cardin, Michel-Alexandre & Kazantzis, Nikolaos, 2023. "Economic performance evaluation of flexible centralised and decentralised blue hydrogen production systems design under uncertainty," Applied Energy, Elsevier, vol. 352(C).
    12. Jang, Jaeuk & Lee, Hyunsoo, 2024. "Effective hydrogen supply chain management framework considering nonlinear multi-stage process uncertainties," Applied Energy, Elsevier, vol. 367(C).
    13. Suprava Chakraborty & Nallapaneni Manoj Kumar & Arunkumar Jayakumar & Santanu Kumar Dash & Devaraj Elangovan, 2021. "Selected Aspects of Sustainable Mobility Reveals Implementable Approaches and Conceivable Actions," Sustainability, MDPI, vol. 13(22), pages 1-31, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt4qp5m2kr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.