IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt14p44238.html
   My bibliography  Save this paper

The Fuel-Travel-Back Approach to Hydrogen Station Siting

Author

Listed:
  • Lin, Zhenhong
  • Ogden, Joan
  • Fan, Yueyue
  • Chen, Chien-Wei

Abstract

The problem of hydrogen station location is often studied through understanding refueling behavior or reviewing the experience of gasoline stations. Driven by the notion "where you drive more is where you more likely need refueling", this paper develops a new approach where station siting is treated as a fuel-travel-back problem and the only required data is VMT distribution. Such a fuel-travel-back problem is a typical transportation problem and is solved as mix-integerprogramming model. When the total fuel-travel-back time is minimized, so is the average refueling travel time of a random motorist, for which theoretical deduction is provided. The model is applied to derive an optimal station roll-out scheme for Southern California. The results show that, if station size constraints are relaxed, only 18% of existing gas station number is needed to achieve the current fuel accessibility of gasoline in the region. Fewer stations lead to larger station size, suggesting a need to re-examine the current speculation on designs of hydrogen station and distribution system and to conduct more regional studies for discovery of optimistic and pessimistic regions for hydrogen. The results also indicate that early stations should be located strategically and even at low-demand locations, which is contradictory to existing proposition.

Suggested Citation

  • Lin, Zhenhong & Ogden, Joan & Fan, Yueyue & Chen, Chien-Wei, 2009. "The Fuel-Travel-Back Approach to Hydrogen Station Siting," Institute of Transportation Studies, Working Paper Series qt14p44238, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt14p44238
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/14p44238.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt7p3500g2, Institute of Transportation Studies, UC Davis.
    2. J. N. Hooker & R. S. Garfinkel & C. K. Chen, 1991. "Finite Dominating Sets for Network Location Problems," Operations Research, INFORMS, vol. 39(1), pages 100-118, February.
    3. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    4. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt1804p4vw, Institute of Transportation Studies, UC Davis.
    5. Oded Berman & Richard C. Larson & Nikoletta Fouska, 1992. "Optimal Location of Discretionary Service Facilities," Transportation Science, INFORMS, vol. 26(3), pages 201-211, August.
    6. Bapna, Ravi & Thakur, Lakshman S. & Nair, Suresh K., 2002. "Infrastructure development for conversion to environmentally friendly fuel," European Journal of Operational Research, Elsevier, vol. 142(3), pages 480-496, November.
    7. Ogden, Joan M. & Williams, Robert H. & Larson, Eric D., 2004. "Societal lifecycle costs of cars with alternative fuels/engines," Energy Policy, Elsevier, vol. 32(1), pages 7-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
    2. S. A. MirHassani & R. Ebrazi, 2013. "A Flexible Reformulation of the Refueling Station Location Problem," Transportation Science, INFORMS, vol. 47(4), pages 617-628, November.
    3. Michael Kuby & Seow Lim, 2007. "Location of Alternative-Fuel Stations Using the Flow-Refueling Location Model and Dispersion of Candidate Sites on Arcs," Networks and Spatial Economics, Springer, vol. 7(2), pages 129-152, June.
    4. Wang, Guihua, 2008. "Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways," Institute of Transportation Studies, Working Paper Series qt41x6t130, Institute of Transportation Studies, UC Davis.
    5. Upchurch, Christopher & Kuby, Michael, 2010. "Comparing the p-median and flow-refueling models for locating alternative-fuel stations," Journal of Transport Geography, Elsevier, vol. 18(6), pages 750-758.
    6. Lin, Zhenhong & Chen, Chien-Wei & Fan, Yueyue & Ogden, Joan M., 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: The Least-Cost Hydrogen for Southern California," Institute of Transportation Studies, Working Paper Series qt0333714s, Institute of Transportation Studies, UC Davis.
    7. Nicholas, Michael A & Ogden, J, 2010. "An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California," Institute of Transportation Studies, Working Paper Series qt92b440q8, Institute of Transportation Studies, UC Davis.
    8. Matteo Muratori & Brian Bush & Chad Hunter & Marc W. Melaina, 2018. "Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles †," Energies, MDPI, vol. 11(5), pages 1-14, May.
    9. Singh, Sonal & Jain, Shikha & PS, Venkateswaran & Tiwari, Avanish K. & Nouni, Mansa R. & Pandey, Jitendra K. & Goel, Sanket, 2015. "Hydrogen: A sustainable fuel for future of the transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 623-633.
    10. Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
    11. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    12. Solanki, Bhanupratap Singh & Lim, Hoyoung & Yoon, Seok Jun & Ham, Hyung Chul & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2025. "Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    13. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    14. Chang, Le & Li, Zheng & Gao, Dan & Huang, He & Ni, Weidou, 2007. "Pathways for hydrogen infrastructure development in China: Integrated assessment for vehicle fuels and a case study of Beijing," Energy, Elsevier, vol. 32(11), pages 2023-2037.
    15. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    16. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    17. Yongxi Huang & Yueyue Fan & Nils Johnson, 2010. "Multistage System Planning for Hydrogen Production and Distribution," Networks and Spatial Economics, Springer, vol. 10(4), pages 455-472, December.
    18. Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    20. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.

    More about this item

    Keywords

    UCD-ITS-RP-09-06; Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt14p44238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.