IDEAS home Printed from https://ideas.repec.org/p/cdl/anderf/qt7jp8f42t.html
   My bibliography  Save this paper

Relative Pricing of Options with Stochastic Volatility

Author

Listed:
  • Ledoit, Olivier
  • Santa-Clara, Pedro
  • Yan, Shu

Abstract

This paper offers a new approach for pricing options on assets with stochastic volatility. We start by taking as given the prices of a few simple, liquid European options. More specifically, we take as given the “surface†of Black-Scholes implied volatilities for European options with varying strike prices and maturities. We show that the Black-Scholes implied volatilities of at-the-money options converge to the underlying asset’s instantaneous (stochastic) volatility as the time to maturity goes to zero. We model the stochastic processes followed by the implied volatilities of options of all maturities and strike prices as a joint diffusion with the stock price. In order for no arbitrage opportunities to exist in trading the stock and these options, the drift of the processes followed by the implied volatilities is constrained in such a way that it is fully characterized by the volatilities of the implied volatilities. Finally, we suggest how to use the arbitrage-free joint process for the stock price and its volatility to price other derivatives, such as standard but illiquid options as well as exotic options, using numerical methods. Our approach simply requires as inputs the stock price and the implied volatilities at the time the exotic option is to be priced, as well as estimates of the volatilities of the implied volatilities.

Suggested Citation

  • Ledoit, Olivier & Santa-Clara, Pedro & Yan, Shu, 2002. "Relative Pricing of Options with Stochastic Volatility," University of California at Los Angeles, Anderson Graduate School of Management qt7jp8f42t, Anderson Graduate School of Management, UCLA.
  • Handle: RePEc:cdl:anderf:qt7jp8f42t
    as

    Download full text from publisher

    File URL: http://www.escholarship.org/uc/item/7jp8f42t.pdf;origin=repeccitec
    Download Restriction: no

    References listed on IDEAS

    as
    1. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    2. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    3. Santa-Clara, Pedro & Sornette, Didier, 2001. "The Dynamics of the Forward Interest Rate Curve with Stochastic String Shocks," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 149-185.
    4. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    5. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    6. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    7. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    8. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    9. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    10. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    11. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    12. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Itkin, Andrey, 2015. "To sigmoid-based functional description of the volatility smile," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 264-291.
    2. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model Uncertainty, Recalibration, and the Emergence of Delta-Vega Hedging," Papers 1704.04524, arXiv.org.
    3. Tim Bollerslev & Hao Zhou, 2003. "Volatility puzzles: a unified framework for gauging return-volatility regressions," Finance and Economics Discussion Series 2003-40, Board of Governors of the Federal Reserve System (U.S.).
    4. Aït-Sahalia, Yacine & Amengual, Dante & Manresa, Elena, 2015. "Market-based estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 187(2), pages 418-435.
    5. Ang, Andrew & Hodrick, Robert J. & Xing, Yuhang & Zhang, Xiaoyan, 2009. "High idiosyncratic volatility and low returns: International and further U.S. evidence," Journal of Financial Economics, Elsevier, vol. 91(1), pages 1-23, January.
    6. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    7. Martin Schweizer & Johannes Wissel, 2008. "Term Structures Of Implied Volatilities: Absence Of Arbitrage And Existence Results," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 77-114.
    8. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
    9. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
    10. Moriggia, V. & Muzzioli, S. & Torricelli, C., 2009. "On the no-arbitrage condition in option implied trees," European Journal of Operational Research, Elsevier, vol. 193(1), pages 212-221, February.
    11. Carol Alexander & Leonardo Nogueira, 2004. "Stochastic Local Volatility," ICMA Centre Discussion Papers in Finance icma-dp2008-02, Henley Business School, Reading University, revised Mar 2008.
    12. Carey, Alexander, 2008. "Natural volatility and option pricing," MPRA Paper 6709, University Library of Munich, Germany.
    13. Yacine Ait-Sahalia & Robert Kimmel, 2004. "Maximum Likelihood Estimation of Stochastic Volatility Models," NBER Working Papers 10579, National Bureau of Economic Research, Inc.
    14. repec:spr:finsto:v:21:y:2017:i:4:d:10.1007_s00780-017-0342-6 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:anderf:qt7jp8f42t. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff). General contact details of provider: http://edirc.repec.org/data/aguclus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.