IDEAS home Printed from https://ideas.repec.org/p/cbo/wpaper/59877.html
   My bibliography  Save this paper

How CBO Projects Inflation

Author

Listed:
  • Chandler Lester

Abstract

No abstract is available for this item.

Suggested Citation

  • Chandler Lester, 2024. "How CBO Projects Inflation," Working Papers 59877, Congressional Budget Office.
  • Handle: RePEc:cbo:wpaper:59877
    as

    Download full text from publisher

    File URL: https://www.cbo.gov/system/files/2024-02/59877-Inflation.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Dotsey & Shigeru Fujita & Tom Stark, 2018. "Do Phillips Curves Conditionally Help to Forecast Inflation?," International Journal of Central Banking, International Journal of Central Banking, vol. 14(4), pages 43-92, September.
    2. Kristin J. Forbes & Joseph E. Gagnon & Christopher G. Collins, 2021. "Low inflation bends the Phillips curve around the world: Extended results," Working Paper Series WP21-15, Peterson Institute for International Economics.
    3. Kristin J. Forbes & Joseph E. Gagnon & Christopher G. Collins, 2022. "Low Inflation Bends the Phillips Curve around the World," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 45(89), pages 52-72.
    4. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    5. Congressional Budget Office, 2024. "An Update to the Budget and Economic Outlook: 2024 to 2034," Reports 60039, Congressional Budget Office.
    6. Jonathon Hazell & Juan Herreño & Emi Nakamura & Jón Steinsson, 2022. "The Slope of the Phillips Curve: Evidence from U.S. States," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(3), pages 1299-1344.
    7. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    8. Yiqun Gloria Chen, 2019. "Inflation, Inflation Expectations, and the Phillips Curve: Working Paper 2019-07," Working Papers 55501, Congressional Budget Office.
    9. James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    10. U. Devrim Demirel & Matthew Wilson, 2023. "Effects of Fiscal Policy on Inflation: Implications of Supply Disruptions and Economic Slack: Working Paper 2023-05," Working Papers 59056, Congressional Budget Office.
    11. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    12. Michael F. Bryan & Brent Meyer, 2010. "Are some prices in the CPI more forward looking than others? We think so," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2010(02), pages 1-6, May.
    13. Congressional Budget Office, 2024. "The Budget and Economic Outlook: 2024 to 2034," Reports 59710, Congressional Budget Office.
    14. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel M. F. Martins & Fabio Verona, 2024. "Forecasting Inflation with the New Keynesian Phillips Curve: Frequencies Matter," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(4), pages 811-832, August.
    2. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
    3. Duc Do, Nguyen, 2024. "Money/asset ratio as a predictor of inflation," The Quarterly Review of Economics and Finance, Elsevier, vol. 97(C).
    4. Barbara Rossi & Atsushi Inoue & Yiru Wang, 2024. "Has the Phillips curve flattened?," French Stata Users' Group Meetings 2024 22, Stata Users Group.
    5. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    6. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    7. Francesco Bianchi & Giovanni Nicolo & Dongho Song, 2023. "Inflation and Real Activity over the Business Cycle," Finance and Economics Discussion Series 2023-038, Board of Governors of the Federal Reserve System (U.S.).
    8. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(3), pages 1145-1162.
    9. Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022. "A Model of the Fed's View on Inflation," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.
    10. Michael McLeay & Silvana Tenreyro, 2020. "Optimal Inflation and the Identification of the Phillips Curve," NBER Macroeconomics Annual, University of Chicago Press, vol. 34(1), pages 199-255.
    11. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    12. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    13. Roberto Duncan & Enrique Martínez‐García, 2023. "Forecasting inflation in open economies: What can a NOEM model do?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 481-513, April.
    14. Martínez-García Enrique, 2018. "Modeling time-variation over the business cycle (1960–2017): an international perspective," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-25, December.
    15. Anjara Lalaina Jocelyn Rakotoarisoa, 2024. "Modélisations Univariées de l’Inflation Mensuelle à Madagascar : l’Atout du Modèle LSTM, un Réseau de Neurones Récurrents," Post-Print hal-04766563, HAL.
    16. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
    17. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    18. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    19. Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021. "Stochastic model specification in Markov switching vector error correction models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
    20. Torre Cepeda Leonardo E. & Flores Segovia Miguel A., 2020. "Private Banking Credit and Economic Growth in Mexico: A State Level Panel Data Analysis 2005-2018," Working Papers 2020-17, Banco de México.

    More about this item

    JEL classification:

    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbo:wpaper:59877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cbogvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.