IDEAS home Printed from https://ideas.repec.org/p/bri/uobdis/16-669.html
   My bibliography  Save this paper

Dual Regression

Author

Listed:
  • Richard H. Spady
  • Sami Stouli

Abstract

We propose an alternative (‘dual regression’) to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while largely avoiding the need for ‘rearrangement’ to repair the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach relies on a mathematical programming characterization of conditional distribution functions which, in its simplest form, provides a simultaneous estimator of location and scale parameters in a linear heteroscedastic model. The statistical properties of this estimator are derived.

Suggested Citation

  • Richard H. Spady & Sami Stouli, 2016. "Dual Regression," Bristol Economics Discussion Papers 16/669, School of Economics, University of Bristol, UK.
  • Handle: RePEc:bri:uobdis:16/669
    as

    Download full text from publisher

    File URL: http://www.bristol.ac.uk/efm/media/workingpapers/working_papers/pdffiles/dp16669.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    4. Tripathi, Gautam, 1999. "A matrix extension of the Cauchy-Schwarz inequality," Economics Letters, Elsevier, vol. 63(1), pages 1-3, April.
    5. Antonio Cosma & Olivier Scaillet & Rainer von Sachs, 2005. "Multiariate Wavelet-based sahpe preserving estimation for dependant observation," FAME Research Paper Series rp144, International Center for Financial Asset Management and Engineering.
    6. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    7. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2015. "Vector quantile regression: an optimal transport approach," CeMMAP working papers 58/15, Institute for Fiscal Studies.
    8. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    9. repec:hal:spmain:info:hdl:2441/4c5431jp6o888pdrcs0fuirl40 is not listed on IDEAS
    10. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    11. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    12. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    13. Parker, Thomas, 2013. "A Comparison Of Alternative Approaches To Supremum-Norm Goodness-Of-Fit Tests With Estimated Parameters," Econometric Theory, Cambridge University Press, vol. 29(5), pages 969-1008, October.
    14. Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and probability curves without crossing," CeMMAP working papers CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard H. Spady & Sami Stouli, 2018. "Simultaneous Mean-Variance Regression," Bristol Economics Discussion Papers 18/697, School of Economics, University of Bristol, UK.
    2. Newey, Whitney & Stouli, Sami, 2021. "Control variables, discrete instruments, and identification of structural functions," Journal of Econometrics, Elsevier, vol. 222(1), pages 73-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    2. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    3. Gimenes, Nathalie & Guerre, Emmanuel, 2022. "Quantile regression methods for first-price auctions," Journal of Econometrics, Elsevier, vol. 226(2), pages 224-247.
    4. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    5. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    6. Xenxo Vidal-Llana & Carlos Salort Sánchez & Vincenzo Coia & Montserrat Guillen, 2022. ""Non-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with non-crossing conditions"," IREA Working Papers 202215, University of Barcelona, Research Institute of Applied Economics, revised Oct 2022.
    7. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    8. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    9. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    10. Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data estimation via quantile regressions," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 61-94, October.
    11. Tengyuan Liang, 2022. "Universal prediction band via semi‐definite programming," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1558-1580, September.
    12. Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
    13. Roger Koenker & Samantha Leorato & Franco Peracchi, 2013. "Distributional vs. Quantile Regression," EIEF Working Papers Series 1329, Einaudi Institute for Economics and Finance (EIEF), revised Dec 2013.
    14. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    15. Samantha Leorato & Franco Peracchi, 2015. "Comparing Distribution and Quantile Regression," EIEF Working Papers Series 1511, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.
    16. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    17. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    19. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    20. Das, Priyam & Ghosal, Subhashis, 2018. "Bayesian non-parametric simultaneous quantile regression for complete and grid data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 172-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bri:uobdis:16/669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vicky Jackson (email available below). General contact details of provider: https://edirc.repec.org/data/sebriuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.