IDEAS home Printed from https://ideas.repec.org/p/boe/boeewp/0875.html
   My bibliography  Save this paper

Financial stress and the debt structure

Author

Listed:
  • David Gauthier

    (Bank of England)

Abstract

This paper identifies shocks to credit conditions based on aggregate firms’ debt composition. I develop a model where firms fund production with bonds and loans. Only financial shocks imply opposite movements in the two types of debt as firms adjust their debt composition to new credit conditions. I use this result to inform a sign‑restriction VAR and identify the sources of US business cycles. Financial shocks account for a third of output fluctuations. I construct an index of financial stress to test the identification strategy.

Suggested Citation

  • David Gauthier, 2020. "Financial stress and the debt structure," Bank of England working papers 875, Bank of England.
  • Handle: RePEc:boe:boeewp:0875
    as

    Download full text from publisher

    File URL: https://www.bankofengland.co.uk/-/media/boe/files/working-paper/2020/financial-stress-and-the-debt-structure.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    2. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, Enero-Abr.
    3. Jonas E. Arias & Juan F. Rubio‐Ramírez & Daniel F. Waggoner, 2018. "Inference Based on Structural Vector Autoregressions Identified With Sign and Zero Restrictions: Theory and Applications," Econometrica, Econometric Society, vol. 86(2), pages 685-720, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Soohyeon & Kim, Jihyo & Heo, Eunnyeong, 2021. "Speculative incentives to hoard aluminum: Relationship between capital gains and inventories," Resources Policy, Elsevier, vol. 70(C).
    2. Matthew Read, 2023. "Estimating the Effects of Monetary Policy in Australia Using Sign‐restricted Structural Vector Autoregressions," The Economic Record, The Economic Society of Australia, vol. 99(326), pages 329-358, September.
    3. David S. Jacks & Martin Stuermer, 2021. "Dry bulk shipping and the evolution of maritime transport costs, 1850–2020," Australian Economic History Review, Economic History Society of Australia and New Zealand, vol. 61(2), pages 204-227, July.
    4. Dimitris Korobilis, 2020. "Sign restrictions in high-dimensional vector autoregressions," Working Papers 2020_21, Business School - Economics, University of Glasgow.
    5. Korobilis, Dimitris, 2022. "A new algorithm for structural restrictions in Bayesian vector autoregressions," European Economic Review, Elsevier, vol. 148(C).
    6. Diegel, Max & Nautz, Dieter, 2021. "Long-term inflation expectations and the transmission of monetary policy shocks: Evidence from a SVAR analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 130(C).
    7. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    8. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    9. Diegel, Max & Nautz, Dieter, 2020. "The role of long-term inflation expectations for the transmission of monetary policy shocks," Discussion Papers 2020/19, Free University Berlin, School of Business & Economics.
    10. Robin Braun & Ralf Brüggemann, 2020. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2020-01, Department of Economics, University of Konstanz.
    11. Ankargren, Sebastian & Shahnazarian, Hovick, 2019. "The Interaction Between Fiscal and Monetary Policies: Evidence from Sweden," Working Paper Series 365, Sveriges Riksbank (Central Bank of Sweden), revised 01 Apr 2019.
    12. Raffaella Giacomini & Toru Kitagawa & Matthew Read, 2021. "Identification and Inference Under Narrative Restrictions," Papers 2102.06456, arXiv.org.
    13. Atsushi Inoue & Lutz Kilian, 2020. "The Role of the Prior in Estimating VAR Models with Sign Restrictions," Working Papers 2030, Federal Reserve Bank of Dallas.
    14. Antolín-Díaz, Juan & Petrella, Ivan & Rubio-Ramírez, Juan F., 2021. "Structural scenario analysis with SVARs," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 798-815.
    15. Yasuharu Iwata & Hirokuni IIboshi, 2023. "The Nexus between Public Debt and the Government Spending Multiplier: Fiscal Adjustments Matter," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(4), pages 830-858, August.
    16. Fisher, Lance A. & Huh, Hyeon-seung, 2019. "An IV framework for combining sign and long-run parametric restrictions in SVARs," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
    17. Francesco Simone Lucidi, 2023. "The misalignment of fiscal multipliers in Italian regions," Regional Studies, Taylor & Francis Journals, vol. 57(10), pages 2073-2086, October.
    18. Inoue, Atsushi & Kilian, Lutz, 2022. "Joint Bayesian inference about impulse responses in VAR models," Journal of Econometrics, Elsevier, vol. 231(2), pages 457-476.
    19. Geiger, Martin & Güntner, Jochen, 2024. "The chronology of Brexit and UK monetary policy," Journal of Monetary Economics, Elsevier, vol. 142(C).
    20. Ferreira, Leonardo N., 2022. "Forward guidance matters: Disentangling monetary policy shocks," Journal of Macroeconomics, Elsevier, vol. 73(C).

    More about this item

    Keywords

    Business cycles; financial shocks; firm funding; sign restrictions;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boe:boeewp:0875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Media Team (email available below). General contact details of provider: https://edirc.repec.org/data/boegvuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.