IDEAS home Printed from https://ideas.repec.org/p/bdr/borrec/1098.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Detecting anomalous payments networks: A dimensionality reduction approach

Author

Listed:
  • Carlos León

    (Banco de la República de Colombia)

Abstract

Anomaly detection methods aim at identifying observations that deviate manifestly from what is expected. Such methods are usually run on low dimensional data, such as time series. However, the increasing importance of high dimensional payments and exposures data for financial oversight requires methods able to detect anomalous networks. To detect an anomalous network, dimensionality reduction allows measuring to what extent its main connective features (i.e. the structure) deviate from those regarded as typical or expected. The key to such measure resides in the ability of dimensionality reduction methods to reconstruct data with an error; this reconstruction error serves as a yardstick for deviation from what is expected. Principal component analysis (PCA) is used as dimensionality reduction method, and a clustering algorithm is used to classify reconstruction errors into normal and anomalous. Based on data from Colombia’s large-value payments system and a set of synthetic anomalous networks created by means of intraday payments simulations, results suggest that detecting anomalous payments networks is feasible and promising for financial oversight purposes. **** RESUMEN: Los métodos para detección de anomalías buscan identificar observaciones que se desvían ostensiblemente de lo esperado. Esos métodos suelen utilizarse con datos de baja dimensionalidad, tales como las series de tiempo. Sin embargo, la creciente importancia de las series de redes de pagos y exposiciones –series de alta dimensionalidad- en el seguimiento de los mercados financieros exige métodos aptos para detectar redes anómalas. Para detectar una red anómala, la reducción de dimensiones permite cuantificar qué tan diferentes son las características conectivas de una red (i.e. su estructura) con respecto a aquellas que pueden ser consideradas como normales. Esto se consigue gracias a que la reducción de dimensiones permite reconstruir los datos con un error; ese error sirve de parámetro para determinar qué tan diferentes son las características conectivas de las redes. La descomposición por componentes principales es utilizada como método para reducir dimensionalidad, y un algoritmo de agrupamiento clasifica los errores de reconstrucción en normales o anómalos. Con base en datos del sistema de pagos de alto valor colombiano y un conjunto de redes de pagos anómalas creadas artificialmente a partir de métodos de simulación de pagos intradía, los resultados sugieren que la detección de redes de pagos anómalas es posible y prometedor para propósitos de seguimiento de los mercados financieros.

Suggested Citation

  • Carlos León, 2019. "Detecting anomalous payments networks: A dimensionality reduction approach," Borradores de Economia 1098, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:borrec:1098
    DOI: https://doi.org/10.32468/be.1098
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/be.1098
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.32468/be.1098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Berndsen, Ron J. & León, Carlos & Renneboog, Luc, 2018. "Financial stability in networks of financial institutions and market infrastructures," Journal of Financial Stability, Elsevier, vol. 35(C), pages 120-135.
    2. repec:cup:cbooks:9780521721684 is not listed on IDEAS
    3. repec:cup:cbooks:9780521896955 is not listed on IDEAS
    4. León, Carlos & Berndsen, Ron J., 2014. "Rethinking financial stability: Challenges arising from financial networks’ modular scale-free architecture," Journal of Financial Stability, Elsevier, vol. 15(C), pages 241-256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Gerardo Gage & Raúl Morales-Resendiz & John Arroyo & Jeniffer Rubio & Paolo Barucca, 2022. "Classifying payment patterns with artificial neural networks: an autoencoder approach," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Machine learning in central banking, volume 57, Bank for International Settlements.
    2. León, Carlos & Barucca, Paolo & Acero, Oscar & Gage, Gerardo & Ortega, Fabio, 2020. "Pattern recognition of financial institutions’ payment behavior," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    3. Ajit Desai & Anneke Kosse & Jacob Sharples, 2024. "Finding a needle in a haystack: a machine learning framework for anomaly detection in payment systems," BIS Working Papers 1188, Bank for International Settlements.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saengchote, K & Castro-Iragorri, C, 2023. "Network Topology in Decentralized Finance," Documentos de Trabajo 20782, Universidad del Rosario.
    2. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    3. Carlos León & Jorge Cely & Carlos Cadena, 2016. "Identifying Interbank Loans, Rates, and Claims Networks from Transactional Data," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 85, pages 91-125, Julio - D.
    4. Ricardo Mariño-Martínez & Carlos León & Carlos Cadena-Silva, 2020. "Las entidades de contrapartida central en la mitigación del riesgo de contraparte y de liquidez: El caso de los derivados cambiarios en Colombia," Borradores de Economia 1101, Banco de la Republica de Colombia.
    5. Zhang, Simpson & van der Schaar, Mihaela, 2020. "Reputational dynamics in financial networks during a crisis," Journal of Financial Stability, Elsevier, vol. 49(C).
    6. Jhonatan Pérez & Carlos León & Ricardo Mariño, 2014. "Aproximación a la estructura del mercado cambiario colombiano desde el análisis de redes," Revista Ciencias Estratégicas, Universidad Pontificia Bolivariana, December.
    7. Harold M. Hastings & Tai Young-Taft & Chih-Jui Tsen, 2020. "Ecology, Economics, and Network Dynamics," Economics Working Paper Archive wp_971, Levy Economics Institute.
    8. Fabio Della Rossa & Lorenzo Giannini & Pietro DeLellis, 2020. "Herding or wisdom of the crowd? Controlling efficiency in a partially rational financial market," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
    9. Berndsen, Ron J. & León, Carlos & Renneboog, Luc, 2018. "Financial stability in networks of financial institutions and market infrastructures," Journal of Financial Stability, Elsevier, vol. 35(C), pages 120-135.
    10. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9, January.
    11. León, C., 2015. "Financial stability from a network perspective," Other publications TiSEM bb2e4e44-e842-45c6-a946-4, Tilburg University, School of Economics and Management.
    12. Ellis, Scott & Sharma, Satish & Brzeszczyński, Janusz, 2022. "Systemic risk measures and regulatory challenges," Journal of Financial Stability, Elsevier, vol. 61(C).
    13. Caceres-Santos, Jonnathan & Rodriguez-Martinez, Anahi & Caccioli, Fabio & Martinez-Jaramillo, Serafin, 2020. "Systemic risk and other interdependencies among banks in Bolivia," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    14. Boyao Wu & Difang Huang & Muzi Chen, 2023. "Estimating contagion mechanism in global equity market with time‐zone effect," Financial Management, Financial Management Association International, vol. 52(3), pages 543-572, September.
    15. Jin, Xisong & Nadal De Simone, Francisco, 2020. "Monetary policy and systemic risk-taking in the Euro area investment fund industry: A structural factor-augmented vector autoregression analysis," Journal of Financial Stability, Elsevier, vol. 49(C).
    16. Boyao Wu & Difang Huang & Muzi Chen, 2024. "Estimating Contagion Mechanism in Global Equity Market with Time-Zone Effect," Papers 2404.04335, arXiv.org.
    17. Kosmidou, Kyriaki & Kousenidis, Dimitrios & Ladas, Anestis & Negkakis, Christos, 2017. "Determinants of risk in the banking sector during the European Financial Crisis," Journal of Financial Stability, Elsevier, vol. 33(C), pages 285-296.
    18. León, Carlos & Machado, Clara & Sarmiento, Miguel, 2018. "Identifying central bank liquidity super-spreaders in interbank funds networks," Journal of Financial Stability, Elsevier, vol. 35(C), pages 75-92.
    19. Huang, Yan & Wan, Jiansong & Huang, Xin, 2019. "Quantitative analysis of financial system fragility based on manifold curvature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1276-1285.
    20. León, C. & Sarmiento, M., 2016. "Liquidity and Counterparty Risks Tradeoff in Money Market Networks," Discussion Paper 2016-017, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    Anomaly; payments; network; dimensionality; clustering; anomalías; pagos; redes; dimensionalidad; agrupamiento;
    All these keywords.

    JEL classification:

    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:1098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.