A neural network architecture for data editing in the Bank of Italy�s business surveys
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- John Creedy & Vance L. Martin (ed.), 1997. "Nonlinear Economic Models," Books, Edward Elgar Publishing, number 1314, March.
- Yves Bentz & Dwight Merunka, 2000. "Neural networks and the multinomial logit for brand choice modelling: a hybrid approach," Post-Print hal-01822273, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gelhausen, Marc Christopher, 2007. "A Generalized Neural Logit Model for Airport and Access Mode Choice in Germany," MPRA Paper 4313, University Library of Munich, Germany, revised 2007.
- Reinhold Decker, 2014. "Real-Time Analysis of Online Product Reviews by Means of Multi-Layer Feed-Forward Neural Networks," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 4(11), pages 60-70, November.
- Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
- Richard Chamboko & Jorge M. Bravo, 2016. "On the modelling of prognosis from delinquency to normal performance on retail consumer loans," Risk Management, Palgrave Macmillan, vol. 18(4), pages 264-287, December.
- Hruschka, Harald & Fettes, Werner & Probst, Markus, 2004. "An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications," European Journal of Operational Research, Elsevier, vol. 159(1), pages 166-180, November.
- Shenhao Wang & Baichuan Mo & Jinhua Zhao, 2020. "Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks," Papers 2010.11644, arXiv.org.
- Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D. S. Prasada, 2007.
"Estimating and Combining National Income Distributions Using Limited Data,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 97-109, January.
- D.S. Prasada Rao & Duangkamon Chotikapanich & William E. Griffiths, 2004. "Estimating and Combining National Income Distributions using Limited Data," Econometric Society 2004 Australasian Meetings 213, Econometric Society.
- Duangkamon Chotikapanich & William E. Griffiths & D.S. Prasada Rao, 2005. "Estimating and Combining National Income Distributions using Limited Data," Department of Economics - Working Papers Series 926, The University of Melbourne.
- Fernandes, Marcelo, 2006. "Financial crashes as endogenous jumps: estimation, testing and forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 30(1), pages 111-141, January.
- Gholamreza Hajargsht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2011. "GMM Estimation of Income Distributions from Grouped Data," Department of Economics - Working Papers Series 1129, The University of Melbourne.
- Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
- Gelhausen, Marc Christopher, 2006. "Airport and Access Mode Choice in Germany: A Generalized Neural Logit Model Approach," MPRA Paper 4236, University Library of Munich, Germany, revised Sep 2006.
- Lahoz, Lorena Torres & Pereira, Francisco Camara & Sfeir, Georges & Arkoudi, Ioanna & Monteiro, Mayara Moraes & Azevedo, Carlos Lima, 2023. "Attitudes and Latent Class Choice Models using Machine Learning," Journal of choice modelling, Elsevier, vol. 49(C).
- Harald Hruschka, 2007. "Using a heterogeneous multinomial probit model with a neural net extension to model brand choice," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 113-127.
- Zhongze Cai & Hanzhao Wang & Kalyan Talluri & Xiaocheng Li, 2022. "Deep Learning for Choice Modeling," Papers 2208.09325, arXiv.org.
- Wang, Shenhao & Mo, Baichuan & Zhao, Jinhua, 2021. "Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 333-358.
- Vroomen, Bjorn & Hans Franses, Philip & van Nierop, Erjen, 2004.
"Modeling consideration sets and brand choice using artificial neural networks,"
European Journal of Operational Research, Elsevier, vol. 154(1), pages 206-217, April.
- Vroomen, B.L.K. & Franses, Ph.H.B.F. & van Nierop, J.E.M., 2001. "Modeling Consideration Sets and Brand Choice Using Artificial Neural Networks," ERIM Report Series Research in Management ERS-2001-10-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Benjamin Bureau & Anne Duquerroy & Julien Giorgi & Mathias Lé & Suzanne Scott & Frédéric Vinas, 2021. "Corporate activity in France amid the Covid-19 crisis. A granular data analysis," Working papers 823, Banque de France.
- Koh, Seng Kee & Fong, Wai Mun & Chan, Fabrice, 2007. "A Cardan's discriminant approach to predicting currency crashes," Journal of International Money and Finance, Elsevier, vol. 26(1), pages 131-148, February.
- Reinhold Decker, 2014. "Real-Time Analysis of Online Product Reviews by Means of Multi-Layer Feed-Forward Neural Networks," International Journal of Business and Social Research, LAR Center Press, vol. 4(11), pages 60-70, November.
- Ortelli, Nicola & Hillel, Tim & Pereira, Francisco C. & de Lapparent, Matthieu & Bierlaire, Michel, 2021. "Assisted specification of discrete choice models," Journal of choice modelling, Elsevier, vol. 39(C).
More about this item
Keywords
data quality; data editing; binary classification; neural networks; measurement error;All these keywords.
JEL classification:
- C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BAN-2007-03-10 (Banking)
- NEP-CMP-2007-03-10 (Computational Economics)
- NEP-NEU-2007-03-10 (Neuroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_612_07. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.