IDEAS home Printed from https://ideas.repec.org/p/bde/wpaper/2222.html
   My bibliography  Save this paper

Accuracy of explanations of machine learning models for credit decisions

Author

Listed:
  • Andrés Alonso

    (Banco de España)

  • José Manuel Carbó

    (Banco de España)

Abstract

One of the biggest challenges for the application of machine learning (ML) models in finance is how to explain their results. In recent years, innovative interpretability techniques have appeared to assist in this task, although their usefulness is still a matter of debate within the industry. In this article we propose a novel framework to assess how accurate these techniques are. Our work is based on the generation of synthetic datasets. This allows us to define the importance of the variables, so we can calculate to what extent the explanations given by these techniques match the ground truth of our data. We perform an empirical exercise in which we apply two non-interpretable ML models (XGBoost and Deep Learning) to the synthetic datasets, , and then we explain their results using two popular interpretability techniques, SHAP and permutation Feature Importance (FI). We conclude that generating synthetic datasets shows potential as a useful approach for supervisors and practitioners who wish to assess interpretability techniques.

Suggested Citation

  • Andrés Alonso & José Manuel Carbó, 2022. "Accuracy of explanations of machine learning models for credit decisions," Working Papers 2222, Banco de España.
  • Handle: RePEc:bde:wpaper:2222
    as

    Download full text from publisher

    File URL: https://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/22/Files/dt2222e.pdf
    File Function: First version, June 2022
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Y Liu & M Schumann, 2005. "Data mining feature selection for credit scoring models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1099-1108, September.
    2. Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," NBER Working Papers 26165, National Bureau of Economic Research, Inc.
    3. Alexander Arimond & Damian Borth & Andreas Hoepner & Michael Klawunn & Stefan Weisheit, 2020. "Neural Networks and Value at Risk," Papers 2005.01686, arXiv.org, revised May 2020.
    4. Nag, Ashok K & Mitra, Amit, 2002. "Forecasting Daily Foreign Exchange Rates Using Genetically Optimized Neural Networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 501-511, November.
    5. Teresa Bono & Karen Croxson & Adam Giles, 2021. "Algorithmic fairness in credit scoring," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 585-617.
    6. Andreas Fuster & Paul Goldsmith‐Pinkham & Tarun Ramadorai & Ansgar Walther, 2022. "Predictably Unequal? The Effects of Machine Learning on Credit Markets," Journal of Finance, American Finance Association, vol. 77(1), pages 5-47, February.
    7. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    8. Andrés Alonso & José Manuel Carbó, 2021. "Understanding the performance of machine learning models to predict credit default: a novel approach for supervisory evaluation," Working Papers 2105, Banco de España.
    9. Andreas G. F. Hoepner & David McMillan & Andrew Vivian & Chardin Wese Simen, 2021. "Significance, relevance and explainability in the machine learning age: an econometrics and financial data science perspective," The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 1-7, January.
    10. Bartlett, Robert & Morse, Adair & Stanton, Richard & Wallace, Nancy, 2022. "Consumer-lending discrimination in the FinTech Era," Journal of Financial Economics, Elsevier, vol. 143(1), pages 30-56.
    11. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    12. Michael Bücker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2022. "Transparency, auditability, and explainability of machine learning models in credit scoring," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 70-90, January.
    13. Shen, Feng & Zhao, Xingchao & Li, Zhiyong & Li, Ke & Meng, Zhiyi, 2019. "A novel ensemble classification model based on neural networks and a classifier optimisation technique for imbalanced credit risk evaluation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    14. Laura Blattner & Scott Nelson & Jann Spiess, 2021. "Unpacking the Black Box: Regulating Algorithmic Decisions," Papers 2110.03443, arXiv.org, revised Jul 2023.
    15. Andrés Alonso & José Manuel Carbó, 2020. "Machine learning in credit risk: measuring the dilemma between prediction and supervisory cost," Working Papers 2032, Banco de España.
    16. Giuseppe Cascarino & Mirko Moscatelli & Fabio Parlapiano, 2022. "Explainable Artificial Intelligence: interpreting default forecasting models based on Machine Learning," Questioni di Economia e Finanza (Occasional Papers) 674, Bank of Italy, Economic Research and International Relations Area.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso-Robisco, Andrés & Carbó, José Manuel, 2022. "Can machine learning models save capital for banks? Evidence from a Spanish credit portfolio," International Review of Financial Analysis, Elsevier, vol. 84(C).
    2. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    3. Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    4. Ajitha Kumari Vijayappan Nair Biju & Ann Susan Thomas & J Thasneem, 2024. "Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 849-878, February.
    5. Agarwal, Shivam & Muckley, Cal B. & Neelakantan, Parvati, 2023. "Countering racial discrimination in algorithmic lending: A case for model-agnostic interpretation methods," Economics Letters, Elsevier, vol. 226(C).
    6. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    7. Andrés Alonso & José Manuel Carbó, 2021. "Understanding the performance of machine learning models to predict credit default: a novel approach for supervisory evaluation," Working Papers 2105, Banco de España.
    8. Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
    9. Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
    10. Christophe Hurlin & Christophe Perignon & Sébastien Saurin, 2021. "The Fairness of Credit Scoring Models," Working Papers hal-03501452, HAL.
    11. Pedro Guerra & Mauro Castelli, 2021. "Machine Learning Applied to Banking Supervision a Literature Review," Risks, MDPI, vol. 9(7), pages 1-24, July.
    12. Natee Amornsiripanitch, 2023. "The Age Gap in Mortgage Access," Working Papers 23-03, Federal Reserve Bank of Philadelphia.
    13. Wosnitza, Jan Henrik, 2022. "Calibration alternatives to logistic regression and their potential for transferring the dispersion of discriminatory power into uncertainties of probabilities of default," Discussion Papers 04/2022, Deutsche Bundesbank.
    14. Yuwei Yin & Yazheng Yang & Jian Yang & Qi Liu, 2023. "FinPT: Financial Risk Prediction with Profile Tuning on Pretrained Foundation Models," Papers 2308.00065, arXiv.org.
    15. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    16. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    17. Erel, Isil & Liebersohn, Jack, 2022. "Can FinTech reduce disparities in access to finance? Evidence from the Paycheck Protection Program," Journal of Financial Economics, Elsevier, vol. 146(1), pages 90-118.
    18. OlaOluwa S. Yaya & Ahamuefula E. Ogbonna & Fumitaka Furuoka & Luis A. Gil‐Alana, 2021. "A New Unit Root Test for Unemployment Hysteresis Based on the Autoregressive Neural Network," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 960-981, August.
    19. Noori, Mohammad & Hitaj, Asmerilda, 2023. "Dissecting hedge funds' strategies," International Review of Financial Analysis, Elsevier, vol. 85(C).
    20. Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.

    More about this item

    Keywords

    synthetic datasets; artificial intelligence; interpretability; machine learning; credit assessment;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bde:wpaper:2222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ángel Rodríguez. Electronic Dissemination of Information Unit. Research Department. Banco de España (email available below). General contact details of provider: https://edirc.repec.org/data/bdegves.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.