IDEAS home Printed from https://ideas.repec.org/p/bca/bocawp/09-10.html
   My bibliography  Save this paper

Computing the Accuracy of Complex Non-Random Sampling Methods: The Case of the Bank of Canada's Business Outlook Survey

Author

Listed:
  • Daniel de Munnik
  • David Dupuis
  • Mark Illing

Abstract

A number of central banks publish their own business conditions survey based on non-random sampling methods. The results of these surveys influence monetary policy decisions and thus affect expectations in financial markets. To date, however, no one has computed the statistical accuracy of these surveys because their respective non-random sampling method renders this assessment non-trivial. This paper describes a methodology for modeling complex non-random sampling behaviour, and computing relevant measures of statistical confidence, based on a given survey's historical sample selection practice. We apply this framework to the Bank of Canada's Business Outlook Survey by describing the sampling method in terms of historical practices and Bayesian probabilities. This allows us to replicate the firm selection process using Monte Carlo simulations on a comprehensive micro-dataset of Canadian firms. We find, under certain assumptions, no evidence that the Bank's firm selection process results in biased estimates and/or wider confidence intervals.

Suggested Citation

  • Daniel de Munnik & David Dupuis & Mark Illing, 2009. "Computing the Accuracy of Complex Non-Random Sampling Methods: The Case of the Bank of Canada's Business Outlook Survey," Staff Working Papers 09-10, Bank of Canada.
  • Handle: RePEc:bca:bocawp:09-10
    as

    Download full text from publisher

    File URL: http://www.bankofcanada.ca/wp-content/uploads/2010/02/wp09-10.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Tiff Macklem, 2002. "Information and Analysis for Monetary Policy: Coming to a Decision," Bank of Canada Review, Bank of Canada, vol. 2002(Summer), pages 11-18.
    2. JAMES G. MacKINNON, 2006. "Bootstrap Methods in Econometrics," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 2-18, September.
    3. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Econometric and statistical methods; Central bank research; Regional economic developments;

    JEL classification:

    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:09-10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.bank-banque-canada.ca/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.