IDEAS home Printed from https://ideas.repec.org/p/bav/wpaper/202_fehrleheibergerhuber.html
   My bibliography  Save this paper

Polynomial chaos expansion: Efficient evaluation and estimation of computational models

Author

Listed:
  • Daniel Fehrle
  • Christopher Heiberger
  • Johannes Huber

Abstract

Polynomial chaos expansion (PCE) provides a method that enables the user to represent a quantity of interest (QoI) of a model’s solution as a series expansion of uncertain model inputs, usually its parameters. Among the QoIs are the policy function, the second moments of observables, or the posterior kernel. Hence, PCE sidesteps the repeated and time consuming evaluations of the model’s outcomes. The paper discusses the suitability of PCE for computational economics. We, therefore, introducetothetheorybehindPCE, analyzetheconvergencebehaviorfordifferent elements of the solution of the standard real business cycle model as illustrative example, and check the accuracy, if standard empirical methods are applied. The results are promising, both in terms of accuracy and efï¬ ciency.

Suggested Citation

  • Daniel Fehrle & Christopher Heiberger & Johannes Huber, 2020. "Polynomial chaos expansion: Efficient evaluation and estimation of computational models," Working Papers 202, Bavarian Graduate Program in Economics (BGPE).
  • Handle: RePEc:bav:wpaper:202_fehrleheibergerhuber
    as

    Download full text from publisher

    File URL: https://bgpe.cms.rrze.uni-erlangen.de/files/2023/07/202_Polynomial-chaos-expansion_Efficient-evaluation-and-estimation-of-computational-models.pdf
    File Function: First version, 2020
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    2. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    3. Burkhard Heer & Alfred Maußner, 2024. "Dynamic General Equilibrium Modeling," Springer Texts in Business and Economics, Springer, edition 3, number 978-3-031-51681-8, October.
    4. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    5. Edward P. Herbst & Frank Schorfheide, 2016. "Bayesian Estimation of DSGE Models," Economics Books, Princeton University Press, edition 1, number 10612.
    6. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    7. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    8. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    9. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    2. Yasuo Hirose & Takeki Sunakawa, 2019. "Review of Solution and Estimation Methods for Nonlinear Dynamic Stochastic General Equilibrium Models with the Zero Lower Bound," The Japanese Economic Review, Japanese Economic Association, vol. 70(1), pages 51-104, March.
    3. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    4. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    5. Tan, Fei, 2018. "A Frequency-Domain Approach to Dynamic Macroeconomic Models," MPRA Paper 90487, University Library of Munich, Germany.
    6. Dana Galizia, 2021. "Saddle cycles: Solving rational expectations models featuring limit cycles (or chaos) using perturbation methods," Quantitative Economics, Econometric Society, vol. 12(3), pages 869-901, July.
    7. Paul Pichler, 2005. "Evaluating Approximate Equilibria of Dynamic Economic Models," Vienna Economics Papers 0510, University of Vienna, Department of Economics.
    8. Yasuo Hirose & Takushi Kurozumi & Willem Van Zandweghe, 2020. "Monetary Policy and Macroeconomic Stability Revisited," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 255-274, July.
    9. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2003. "Some results on the solution of the neoclassical growth model," FRB Atlanta Working Paper 2003-34, Federal Reserve Bank of Atlanta.
    10. Adnan Haider & Musleh ud Din & Ejaz Ghani, 2012. "Monetary Policy, Informality and Business Cycle Fluctuations in a Developing Economy Vulnerable to External Shocks," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 51(4), pages 609-681.
    11. Carlo A. Favero, 2009. "The Econometrics of Monetary Policy: An Overview," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 16, pages 821-850, Palgrave Macmillan.
    12. Onatski, Alexei, 2006. "Winding number criterion for existence and uniqueness of equilibrium in linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 323-345, February.
    13. Francesco Bianchi & Giovanni Nicolò, 2021. "A generalized approach to indeterminacy in linear rational expectations models," Quantitative Economics, Econometric Society, vol. 12(3), pages 843-868, July.
    14. Alfredo Villca, 2019. "Confronting DSGE model with data," Documentos de Trabajo de Valor Público 17803, Universidad EAFIT.
    15. Luisa Corrado & Sean Holly, 2006. "The Linearisation and Optimal Control of Large Non-Linear Rational Expectations Models by Persistent Excitation," Computational Economics, Springer;Society for Computational Economics, vol. 28(2), pages 139-153, September.
    16. Viktors Ajevskis, 2019. "Generalised Impulse Response Function as a Perturbation of a Global Solution to DSGE Models," Working Papers 2019/04, Latvijas Banka.
    17. Lan, Hong & Meyer-Gohde, Alexander, 2013. "Solving DSGE models with a nonlinear moving average," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2643-2667.
    18. Adrien Auclert & Bence Bardóczy & Matthew Rognlie & Ludwig Straub, 2021. "Using the Sequence‐Space Jacobian to Solve and Estimate Heterogeneous‐Agent Models," Econometrica, Econometric Society, vol. 89(5), pages 2375-2408, September.
    19. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    20. Lombardi, Marco J. & Sgherri, Silvia, 2007. "(Un)naturally low? Sequential Monte Carlo tracking of the US natural interest rate," Working Paper Series 794, European Central Bank.

    More about this item

    Keywords

    Polynomial Chaos Expansion; parameter inference; parameter uncertainty; solution methods;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bav:wpaper:202_fehrleheibergerhuber. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anton Barabasch (email available below). General contact details of provider: https://edirc.repec.org/data/vierlde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.