IDEAS home Printed from https://ideas.repec.org/p/aug/augsbe/0341.html
   My bibliography  Save this paper

Polynomial chaos expansion: Efficient evaluation and estimation of computational models

Author

Listed:

Abstract

Polynomial chaos expansion (PCE) provides a method that enables the user to representa quantity of interest (QoI) of a model's solution as a series expansion of uncertainmodel inputs, usually its parameters. Among the QoIs are the policy function,the second moments of observables, or the posterior kernel. Hence, PCE sidesteps therepeated and time consuming evaluations of the model's outcomes.The paper discusses the suitability of PCE for computational economics. We, therefore,introduce to the theory behind PCE, analyze the convergence behavior for differentelements of the solution of the standard real business cycle model as illustrativeexample, and check the accuracy, if standard empirical methods are applied. Theresults are promising, both in terms of accuracy and efficiency.

Suggested Citation

  • Daniel Fehrle & Christopher Heiberger & Johannes Huber, 2020. "Polynomial chaos expansion: Efficient evaluation and estimation of computational models," Discussion Paper Series 341, Universitaet Augsburg, Institute for Economics.
  • Handle: RePEc:aug:augsbe:0341
    as

    Download full text from publisher

    File URL: https://opus.bibliothek.uni-augsburg.de/opus4/files/102631/102631.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gersbach, Hans & Liu, Yulin & Tischhauser, Martin, 2021. "Versatile forward guidance: escaping or switching?," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    2. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    3. Ruge-Murcia, Francisco J., 2007. "Methods to estimate dynamic stochastic general equilibrium models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2599-2636, August.
    4. Burkhard Heer & Alfred Maußner, 2024. "Dynamic General Equilibrium Modeling," Springer Texts in Business and Economics, Springer, edition 3, number 978-3-031-51681-8, March.
    5. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    6. Per Krusell & Anthony A. Smith & Jr., 1998. "Income and Wealth Heterogeneity in the Macroeconomy," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 867-896, October.
    7. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    8. S. Rao Aiyagari, 1994. "Uninsured Idiosyncratic Risk and Aggregate Saving," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 109(3), pages 659-684.
    9. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    10. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    11. Reiter, Michael, 2009. "Solving heterogeneous-agent models by projection and perturbation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 649-665, March.
    12. Dias, Fabio S. & Peters, Gareth W., 2021. "Option pricing with polynomial chaos expansion stochastic bridge interpolators and signed path dependence," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    13. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    14. Edward P. Herbst & Frank Schorfheide, 2016. "Bayesian Estimation of DSGE Models," Economics Books, Princeton University Press, edition 1, number 10612.
    15. Burkhard Heer & Alfred Maußner, 2024. "Weighted Residuals Methods," Springer Texts in Business and Economics, in: Dynamic General Equilibrium Modeling, edition 3, chapter 0, pages 231-310, Springer.
    16. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    2. Juan Carlos Parra-Alvarez & Olaf Posch & Mu-Chun Wang, 2017. "Estimation of Heterogeneous Agent Models: A Likelihood Approach," CESifo Working Paper Series 6717, CESifo.
    3. Schesch, Constantin, 2024. "Pseudospectral methods for continuous-time heterogeneous-agent models," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    4. Adrien Auclert & Bence Bardóczy & Matthew Rognlie & Ludwig Straub, 2021. "Using the Sequence‐Space Jacobian to Solve and Estimate Heterogeneous‐Agent Models," Econometrica, Econometric Society, vol. 89(5), pages 2375-2408, September.
    5. Alali, Walid Y., 2009. "Solution Strategies of Dynamic Stochastic General Equilibrium (DSGE) models," EconStor Preprints 269876, ZBW - Leibniz Information Centre for Economics.
    6. Alali, Walid Y., 2009. "Solution Strategies of Dynamic Stochastic General Equilibrium (DSGE) models," MPRA Paper 116480, University Library of Munich, Germany.
    7. Yasuo Hirose & Takeki Sunakawa, 2019. "Review of Solution and Estimation Methods for Nonlinear Dynamic Stochastic General Equilibrium Models with the Zero Lower Bound," The Japanese Economic Review, Japanese Economic Association, vol. 70(1), pages 51-104, March.
    8. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    9. Carlo A. Favero, 2009. "The Econometrics of Monetary Policy: An Overview," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 16, pages 821-850, Palgrave Macmillan.
    10. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    11. Dan Cao & Wenlan Luo & Guangyu Nie, 2023. "Global GDSGE Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 199-225, December.
    12. Hull, Isaiah, 2015. "Approximate dynamic programming with post-decision states as a solution method for dynamic economic models," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 57-70.
    13. Tan, Fei, 2018. "A Frequency-Domain Approach to Dynamic Macroeconomic Models," MPRA Paper 90487, University Library of Munich, Germany.
    14. Juan Carlos Parra‐Alvarez & Olaf Posch & Mu‐Chun Wang, 2023. "Estimation of Heterogeneous Agent Models: A Likelihood Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(2), pages 304-330, April.
    15. Juan Carlos Parra-Alvarez & Olaf Posch & Mu-Chun Wang, 2017. "Identification and estimation of heterogeneous agent models: A likelihood approach," CREATES Research Papers 2017-35, Department of Economics and Business Economics, Aarhus University.
    16. Muffasir Badshah & Paul Beaumont & Anuj Srivastava, 2013. "Computing Equilibrium Wealth Distributions in Models with Heterogeneous-Agents, Incomplete Markets and Idiosyncratic Risk," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 171-193, February.
    17. Dana Galizia, 2021. "Saddle cycles: Solving rational expectations models featuring limit cycles (or chaos) using perturbation methods," Quantitative Economics, Econometric Society, vol. 12(3), pages 869-901, July.
    18. Paul Pichler, 2005. "Evaluating Approximate Equilibria of Dynamic Economic Models," Vienna Economics Papers 0510, University of Vienna, Department of Economics.
    19. Wouter J. DEN HAAN, 2009. "Solving Dynamic Models with Heterogeneous Agents and Aggregate Uncertainty with Dynare or Dynare++," 2009 Meeting Papers 776, Society for Economic Dynamics.
    20. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.

    More about this item

    Keywords

    Polynomial Chaos Expansion; parameter inference; parameter uncertainty; solution methods;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aug:augsbe:0341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Simone Raab-Kratzmeier (email available below). General contact details of provider: https://edirc.repec.org/data/ivaugde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.