IDEAS home Printed from https://ideas.repec.org/p/bar/bedcje/2007183.html
   My bibliography  Save this paper

Non-constant discounting in finite horizon: The free terminal time case

Author

Listed:
  • Jesus Marin Solano
  • Jorge Navas Rodenes

    (Universitat de Barcelona)

Abstract

This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem. Conditions for the observational equivalence with an associated problem with constant discounting are analyzed. Special attention is paid to the case of free terminal time. Strotzs model (an eating cake problem of a nonrenewable resource with non-constant discounting) is revisited.

Suggested Citation

  • Jesus Marin Solano & Jorge Navas Rodenes, 2007. "Non-constant discounting in finite horizon: The free terminal time case," Working Papers in Economics 183, Universitat de Barcelona. Espai de Recerca en Economia.
  • Handle: RePEc:bar:bedcje:2007183
    as

    Download full text from publisher

    File URL: http://www.ere.ub.es/dtreball/E07183.rdf/at_download/file
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. R. A. Pollak, 1968. "Consistent Planning," Review of Economic Studies, Oxford University Press, vol. 35(2), pages 201-208.
    2. Thaler, Richard, 1981. "Some empirical evidence on dynamic inconsistency," Economics Letters, Elsevier, vol. 8(3), pages 201-207.
    3. Karp, Larry, 2007. "Non-constant discounting in continuous time," Journal of Economic Theory, Elsevier, vol. 132(1), pages 557-568, January.
    4. Karp, Larry, 2005. "Global warming and hyperbolic discounting," Journal of Public Economics, Elsevier, vol. 89(2-3), pages 261-282, February.
    5. Robert J. Barro, 1999. "Ramsey Meets Laibson in the Neoclassical Growth Model," The Quarterly Journal of Economics, Oxford University Press, vol. 114(4), pages 1125-1152.
    6. David Laibson, 1997. "Golden Eggs and Hyperbolic Discounting," The Quarterly Journal of Economics, Oxford University Press, vol. 112(2), pages 443-478.
    7. Karp, Larry & Tsur, Yacov, 2011. "Time perspective and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 62(1), pages 1-14, July.
    8. E. S. Phelps & R. A. Pollak, 1968. "On Second-Best National Saving and Game-Equilibrium Growth," Review of Economic Studies, Oxford University Press, vol. 35(2), pages 185-199.
    9. Karp, Larry & Tsur, Yacov, 2011. "Time perspective and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 62(1), pages 1-14, July.
    10. George Loewenstein & Drazen Prelec, 1992. "Anomalies in Intertemporal Choice: Evidence and an Interpretation," The Quarterly Journal of Economics, Oxford University Press, vol. 107(2), pages 573-597.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raouf Boucekkine & Blanca Martínez & José Ramón Ruiz-Tamarit, 2017. "Optimal Population Growth as an Endogenous Discounting Problem: The Ramsey Case," AMSE Working Papers 1731, Aix-Marseille School of Economics, Marseille, France.
    2. Zhao, Qian & Shen, Yang & Wei, Jiaqin, 2014. "Consumption–investment strategies with non-exponential discounting and logarithmic utility," European Journal of Operational Research, Elsevier, vol. 238(3), pages 824-835.
    3. Caputo, Michael R., 2013. "The intrinsic comparative dynamics of infinite horizon optimal control problems with a time-varying discount rate and time-distance discounting," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 810-820.
    4. Zou, Ziran & Chen, Shou & Wedge, Lei, 2014. "Finite horizon consumption and portfolio decisions with stochastic hyperbolic discounting," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 70-80.
    5. Marín-Solano, Jesús & Navas, Jorge, 2010. "Consumption and portfolio rules for time-inconsistent investors," European Journal of Operational Research, Elsevier, vol. 201(3), pages 860-872, March.
    6. F. J. Escribá-Pérez & M. J. Murgui-García & J. R. Ruiz-Tamarit, 2017. "Economic and Statistical Measurement of Physical Capital with an Application to the Spanish Economy," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2017020, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    7. Nian Yang & Jun Yang & Yu Chen, 2018. "Contracting in a Continuous-Time Model with Three-Sided Moral Hazard and Cost Synergies," Graz Economics Papers 2018-06, University of Graz, Department of Economics.
    8. Schendel, Lorenz S., 2014. "Consumption-investment problems with stochastic mortality risk," SAFE Working Paper Series 43, Research Center SAFE - Sustainable Architecture for Finance in Europe, Goethe University Frankfurt.
    9. Cabo, Francisco & Martín-Herrán, Guiomar & Martínez-García, María Pilar, 2016. "Unbounded growth in the Neoclassical growth model with non-constant discounting," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 93-104.
    10. Albert de-Paz & Jesus Marin-Solano & Jorge Navas, 2011. "Time Consistent Pareto Solutions in Common Access Resource Games with Asymmetric Players," Working Papers in Economics 253, Universitat de Barcelona. Espai de Recerca en Economia.
    11. Feigenbaum, James, 2016. "Equivalent representations of non-exponential discounting models," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 58-71.

    More about this item

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bar:bedcje:2007183. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Espai de Recerca en Economia). General contact details of provider: http://edirc.repec.org/data/feubaes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.