IDEAS home Printed from https://ideas.repec.org/p/aue/wpaper/1516.html
   My bibliography  Save this paper

Spatial Resource Management under Pollution Externalities

Author

Listed:
  • Anastasios Xepapadeas
  • Athanasios Yannacopoulos

Abstract

Variables describing the state of an environmental system such as resources (renewable or exhaustible), pollutants, greenhouse gases have a profound spatial dimension. This is because resources or pollutants are harvested, extracted, emitted, or abated in a specific location or locations, the impacts of environmental variables, whether beneficial or detrimental, have a strong spatial dimension, and there is transport of environmental state variables across geographical space due to natural processes. In this paper we study dynamic optimization for the joint management of resources and pollution when pollution affects resource growth and when spatial transport phenomena both for the resources and the pollution are present. We present approaches that deal with dynamic optimization in infinite dimensional spaces which can be used as tools in environmental and resource economic. We also present methods which can be used to study the emergence of spatial patterns in dynamic optimizations models. Our methods draw on the celebrated Turing diffusion induced instability but are different from Turing�s mechanism since they apply to forward-optimization models. We believe that this approach provides the tools to analyze a wide range of problems with explicit spatial structure which are very often encountered in environmental and resource economics.

Suggested Citation

  • Anastasios Xepapadeas & Athanasios Yannacopoulos, 2015. "Spatial Resource Management under Pollution Externalities," DEOS Working Papers 1516, Athens University of Economics and Business.
  • Handle: RePEc:aue:wpaper:1516
    as

    Download full text from publisher

    File URL: http://wpa.deos.aueb.gr/docs/Spatial.Resource.Management.under.Pollution.Externalities.pdf
    File Function: First version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James E. Wilen, 2007. "Economics of Spatial-Dynamic Processes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(5), pages 1134-1144.
    2. Desmet, Klaus & Rossi-Hansberg, Esteban, 2015. "On the spatial economic impact of global warming," Journal of Urban Economics, Elsevier, vol. 88(C), pages 16-37.
    3. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    4. Brock, William A. & Xepapadeas, Anastasios & Yannacopoulos, Athanasios N., 2014. "Spatial externalities and agglomeration in a competitive industry," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 143-174.
    5. Smith, Martin D. & Sanchirico, James N. & Wilen, James E., 2009. "The economics of spatial-dynamic processes: Applications to renewable resources," Journal of Environmental Economics and Management, Elsevier, vol. 57(1), pages 104-121, January.
    6. Klaus Desmet & Esteban Rossi‐Hansberg, 2010. "On Spatial Dynamics," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 43-63, February.
    7. John Hassler & Per Krusell, 2012. "Economics And Climate Change: Integrated Assessment In A Multi-Region World," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 974-1000, October.
    8. W.A. Brock & A. Xepapadeas & A.N. Yannacopoulos, 2014. "Optimal Control in Space and Time and the Management of Environmental Resources," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 33-68, October.
    9. Behringer, Stefan & Upmann, Thorsten, 2014. "Optimal harvesting of a spatial renewable resource," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 105-120.
    10. Brock, William A. & Engström, Gustav & Grass, Dieter & Xepapadeas, Anastasios, 2013. "Energy balance climate models and general equilibrium optimal mitigation policies," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2371-2396.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W.A. Brock & A. Xepapadeas & A.N. Yannacopoulos, 2014. "Optimal Control in Space and Time and the Management of Environmental Resources," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 33-68, October.
    2. William Brock & Anastasios Xepapadeas, 2020. "Spatial Environmental and Resource Economics," DEOS Working Papers 2002, Athens University of Economics and Business.
    3. Rintaro Yamaguchi, 2021. "Genuine Savings and Sustainability with Resource Diffusion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(2), pages 451-471, October.
    4. de Frutos, Javier & Martín-Herrán, Guiomar, 2019. "Spatial vs. non-spatial transboundary pollution control in a class of cooperative and non-cooperative dynamic games," European Journal of Operational Research, Elsevier, vol. 276(1), pages 379-394.
    5. Javier de Frutos & Guiomar Martín-Herrán, 2016. "Pollution control in a multiregional setting: a differential game with spatially distributed controls," Gecomplexity Discussion Paper Series 201601, Action IS1104 "The EU in the new complex geography of economic systems: models, tools and policy evaluation", revised Jan 2016.
    6. Emmanuelle Augeraud-Véron & Raouf Boucekkine & Vladimir Veliov, 2019. "Distributed Optimal Control Models in Environmental Economics: A Review," AMSE Working Papers 1902, Aix-Marseille School of Economics, France.
    7. W. A. Brock & A. Xepapadeas, 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," Working Papers 2015.66, Fondazione Eni Enrico Mattei.
    8. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    9. William Brock & Anastasios Xepapadeas, 2015. "Spatial Heat Transport, Polar Amplification and Climate Change Policy," DEOS Working Papers 1515, Athens University of Economics and Business.
    10. Breinlich, Holger & Ottaviano, Gianmarco I.P. & Temple, Jonathan R.W., 2014. "Regional Growth and Regional Decline," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 4, pages 683-779, Elsevier.
    11. Xepapadeas, Anastasios & Yannacopoulos, Athanasios N., 2023. "Spatial growth theory: Optimality and spatial heterogeneity," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    12. W. Brock & A. Xepapadeas & A. Yannacopoulos, 2014. "Robust Control and Hot Spots in Spatiotemporal Economic Systems," Dynamic Games and Applications, Springer, vol. 4(3), pages 257-289, September.
    13. William Brock & Anastasios Xepapadeas, 2020. "Climate change policy under spatial heat transport and polar amplification," Chapters, in: Graciela Chichilnisky & Armon Rezai (ed.), Handbook on the Economics of Climate Change, chapter 7, pages 127-166, Edward Elgar Publishing.
    14. Brock, William & Xepapadeas, Anastasios, 2021. "Regional climate policy under deep uncertainty: robust control and distributional concerns," Environment and Development Economics, Cambridge University Press, vol. 26(3), pages 211-238, June.
    15. Fabbri, Giorgio & Faggian, Silvia & Freni, Giuseppe, 2020. "Policy effectiveness in spatial resource wars: A two-region model," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    16. Upmann, Thorsten & Uecker, Hannes & Hammann, Liv & Blasius, Bernd, 2021. "Optimal stock–enhancement of a spatially distributed renewable resource," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    17. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    18. Behringer, Stefan & Upmann, Thorsten, 2014. "Optimal harvesting of a spatial renewable resource," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 105-120.
    19. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2022. "Managing spatial linkages and geographic heterogeneity in dynamic models with transboundary pollution," Journal of Mathematical Economics, Elsevier, vol. 98(C).
    20. Brock, William & Engström, Gustav & Xepapadeas, Anastasios, 2014. "Spatial climate-economic models in the design of optimal climate policies across locations," European Economic Review, Elsevier, vol. 69(C), pages 78-103.

    More about this item

    Keywords

    Spatial transport; renewable resource; pollution; optimization; infinite dimensional spaces; Tiring instability; patter formation; policy design;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aue:wpaper:1516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ekaterini Glynou (email available below). General contact details of provider: https://edirc.repec.org/data/diauegr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.