IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.19824.html

Institutional Learning and Volatility Transmission in ASEAN Equity Markets: A Network-Integrated Regime-Dependent Approach

Author

Listed:
  • Junlin Yang

Abstract

This paper investigates how institutional learning and regional spillovers shape volatility dynamics in ASEAN equity markets. Using daily data for Indonesia, Malaysia, the Philippines, and Thailand from 2010 to 2024, we construct a high-frequency institutional learning index via a MIDAS-EPU approach. Unlike existing studies that treat institutional quality as a static background characteristic, this paper models institutions as a dynamic mechanism that reacts to policy shocks, information pressure, and crisis events. Building on this perspective, we introduce two new volatility frameworks: the Institutional Response Dynamics Model (IRDM), which embeds crisis memory, policy shocks, and information flows; and the Network-Integrated IRDM (N-IRDM), which incorporates dynamic-correlation and institutional-similarity networks to capture cross-market transmission. Empirical results show that institutional learning amplifies short-run sensitivity to shocks yet accelerates post-crisis normalization. Crisis-memory terms explain prolonged volatility clustering, while network interactions improve tail behavior and short-horizon forecasts. Robustness checks using placebo and lagged networks indicate that spillovers reflect a strong regional common factor rather than dependence on specific correlation topologies. Diebold-Mariano and ENCNEW tests confirm that the N-IRDM significantly outperforms baseline GARCH benchmarks. The findings highlight a dual role of institutions and offer policy insights on transparency enhancement, macroprudential communication, and coordinated regional governance.

Suggested Citation

  • Junlin Yang, 2025. "Institutional Learning and Volatility Transmission in ASEAN Equity Markets: A Network-Integrated Regime-Dependent Approach," Papers 2511.19824, arXiv.org.
  • Handle: RePEc:arx:papers:2511.19824
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.19824
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    2. Libing Fang & Baizhu Chen & Honghai Yu & Yichuo Qian, 2018. "The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 413-422, March.
    3. Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
    4. Belcaid, Karim & El Ghini, Ahmed, 2019. "U.S., European, Chinese economic policy uncertainty and Moroccan stock market volatility," The Journal of Economic Asymmetries, Elsevier, vol. 20(C).
    5. Maojun Zhang & Yang Zhao & Jiangxia Nan, 2022. "Economic policy uncertainty and volatility of treasury futures," Review of Derivatives Research, Springer, vol. 25(1), pages 93-107, April.
    6. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    7. Lv, Wendai & Qi, Jipeng & Feng, Jing, 2023. "Economic policy uncertainty and environmental governance company volatility: Evidence from China," Research in International Business and Finance, Elsevier, vol. 64(C).
    8. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    9. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    10. Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
    11. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    12. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    13. Huiling Yuan & Guodong Li & Junhui Wang, 2022. "High-Frequency-Based Volatility Model with Network Structure," Papers 2204.12933, arXiv.org.
    14. Freddy Ronalde Camacho-Villagomez & Yanina Shegia Bajaña-Villagomez & Andrea Johanna Rodríguez-Bustos, 2024. "Estimating the Impact of Oil Price Volatility on the Ecuadorian Economy: A MIDAS Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 371-376, July.
    15. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    16. Nasha Maveé & Mr. Roberto Perrelli & Mr. Axel Schimmelpfennig, 2016. "Surprise, Surprise: What Drives the Rand / U.S. Dollar Exchange Rate Volatility?," IMF Working Papers 2016/205, International Monetary Fund.
    17. Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
    18. Zhu (Drew) Zhang & Jie Yuan & Amulya Gupta, 2024. "Let the Laser Beam Connect the Dots: Forecasting and Narrating Stock Market Volatility," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1400-1416, December.
    19. Ahmed, Walid M.A. & Sleem, Mohamed A.E., 2025. "On the dynamic interdependence between risk factors and clean energy stock prices," Resources Policy, Elsevier, vol. 105(C).
    20. Dew-Becker, Ian & Giglio, Stefano & Kelly, Bryan, 2021. "Hedging macroeconomic and financial uncertainty and volatility," Journal of Financial Economics, Elsevier, vol. 142(1), pages 23-45.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.19824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.