IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.26613.html
   My bibliography  Save this paper

Tests of exogeneity in duration models with censored data

Author

Listed:
  • Gilles Crommen
  • Jean-Pierre Florens
  • Ingrid Van Keilegom

Abstract

Consider the setting in which a researcher is interested in the causal effect of a treatment $Z$ on a duration time $T$, which is subject to right censoring. We assume that $T=\varphi(X,Z,U)$, where $X$ is a vector of baseline covariates, $\varphi(X,Z,U)$ is strictly increasing in the error term $U$ for each $(X,Z)$ and $U\sim \mathcal{U}[0,1]$. Therefore, the model is nonparametric and nonseparable. We propose nonparametric tests for the hypothesis that $Z$ is exogenous, meaning that $Z$ is independent of $U$ given $X$. The test statistics rely on an instrumental variable $W$ that is independent of $U$ given $X$. We assume that $X,W$ and $Z$ are all categorical. Test statistics are constructed for the hypothesis that the conditional rank $V_T= F_{T \mid X,Z}(T \mid X,Z)$ is independent of $(X,W)$ jointly. Under an identifiability condition on $\varphi$, this hypothesis is equivalent to $Z$ being exogenous. However, note that $V_T$ is censored by $V_C =F_{T \mid X,Z}(C \mid X,Z)$, which complicates the construction of the test statistics significantly. We derive the limiting distributions of the proposed tests and prove that our estimator of the distribution of $V_T$ converges to the uniform distribution at a rate faster than the usual parametric $n^{-1/2}$-rate. We demonstrate that the test statistics and bootstrap approximations for the critical values have a good finite sample performance in various Monte Carlo settings. Finally, we illustrate the tests with an empirical application to the National Job Training Partnership Act (JTPA) Study.

Suggested Citation

  • Gilles Crommen & Jean-Pierre Florens & Ingrid Van Keilegom, 2025. "Tests of exogeneity in duration models with censored data," Papers 2510.26613, arXiv.org, revised Dec 2025.
  • Handle: RePEc:arx:papers:2510.26613
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.26613
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    2. German Blanco & Xuan Chen & Carlos A. Flores & Alfonso Flores-Lagunes, 2020. "Bounds on Average and Quantile Treatment Effects on Duration Outcomes Under Censoring, Selection, and Noncompliance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 901-920, October.
    3. Jad Beyhum & Jean-Pierre Florens & Ingrid Van Keilegom, 2022. "Nonparametric Instrumental Regression With Right Censored Duration Outcomes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1034-1045, June.
    4. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2013. "On the Testability of Identification in Some Nonparametric Models With Endogeneity," Econometrica, Econometric Society, vol. 81(6), pages 2535-2559, November.
    5. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    6. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    7. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    8. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    9. Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
    10. James Heckman, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    11. Bijwaard, Govert E. & Ridder, Geert, 2005. "Correcting for selective compliance in a re-employment bonus experiment," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 77-111.
    12. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    13. Smith, Richard J & Blundell, Richard W, 1986. "An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply," Econometrica, Econometric Society, vol. 54(3), pages 679-685, May.
    14. Jialiang Li & Jason Fine & Alan Brookhart, 2015. "Instrumental variable additive hazards models," Biometrics, The International Biometric Society, vol. 71(1), pages 122-130, March.
    15. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2013. "Nonparametric estimation of a heterogeneous demand function under the Slutsky inequality restriction," CeMMAP working papers CWP54/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Howard S. Bloom & Larry L. Orr & Stephen H. Bell & George Cave & Fred Doolittle & Winston Lin & Johannes M. Bos, 1997. "The Benefits and Costs of JTPA Title II-A Programs: Key Findings from the National Job Training Partnership Act Study," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 549-576.
    17. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2024. "Instrumental variable quantile regression under random right censoring," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 21-36.
    18. Feve, Frederique & Florens, Jean-Pierre & Van Keilegom, Ingrid, 2018. "Estimation of Conditional Ranks and Tests of Exogeneity in Nonparametric Nonseparable Models," LIDAM Reprints ISBA 2018016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Abbring, Jaap H & van den Berg, Gerard J, 2005. "Social experiments and intrumental variables with duration outcomes," Working Paper Series 2005:11, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    20. Brigham R. Frandsen, 2015. "Treatment Effects With Censoring and Endogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1745-1752, December.
    21. Gilles Crommen & Jad Beyhum & Ingrid Van Keilegom, 2024. "An instrumental variable approach under dependent censoring," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(2), pages 473-495, June.
    22. Jaap H. Abbring & Gerard J. van den Berg, 2003. "The Nonparametric Identification of Treatment Effects in Duration Models," Econometrica, Econometric Society, vol. 71(5), pages 1491-1517, September.
    23. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    24. Frédérique Fève & Jean-Pierre Florens & Ingrid Van Keilegom, 2018. "Estimation of Conditional Ranks and Tests of Exogeneity in Nonparametric Nonseparable Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 334-345, April.
    25. Michael G. Akritas & Ingrid Van Keilegom, 2003. "Estimation of bivariate and marginal distributions with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 457-471, May.
    26. Chernozhukov, Victor & Imbens, Guido W. & Newey, Whitney K., 2007. "Instrumental variable estimation of nonseparable models," Journal of Econometrics, Elsevier, vol. 139(1), pages 4-14, July.
    27. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
    28. Rivest, Louis-Paul & Wells, Martin T., 2001. "A Martingale Approach to the Copula-Graphic Estimator for the Survival Function under Dependent Censoring," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 138-155, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilles Crommen & Jad Beyhum & Ingrid Van Keilegom, 2025. "Estimation of the complier causal hazard ratio under dependent censoring," Papers 2504.02096, arXiv.org.
    2. Jad Beyhum & Jean-Pierre Florens & Ingrid Van Keilegom, 2022. "Nonparametric Instrumental Regression With Right Censored Duration Outcomes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1034-1045, June.
    3. Jad Beyhum & Jean-Pierre Florens & Ingrid Van Keilegom, 2021. "A nonparametric instrumental approach to endogeneity in competing risks models," Papers 2105.00946, arXiv.org.
    4. Gilles Crommen & Jad Beyhum & Ingrid Van Keilegom, 2024. "An instrumental variable approach under dependent censoring," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(2), pages 473-495, June.
    5. Centorrino, Samuele & Fève, Frédérique & Florens, Jean-Pierre, 2025. "Iterative estimation of nonparametric regressions with continuous endogenous variables and discrete instruments," Journal of Econometrics, Elsevier, vol. 247(C).
    6. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2024. "Instrumental variable quantile regression under random right censoring," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 21-36.
    7. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    8. Chiappori, Pierre-André & Komunjer, Ivana & Kristensen, Dennis, 2015. "Nonparametric identification and estimation of transformation models," Journal of Econometrics, Elsevier, vol. 188(1), pages 22-39.
    9. Babii, Andrii & Florens, Jean-Pierre, 2025. "Are Unobservables Separable?," Econometric Theory, Cambridge University Press, vol. 41(3), pages 551-583, June.
    10. Caetano, Carolina & Rothe, Christoph & Yıldız, Neşe, 2016. "A discontinuity test for identification in triangular nonseparable models," Journal of Econometrics, Elsevier, vol. 193(1), pages 113-122.
    11. Halbert White & Karim Chalak, 2008. "Identifying Structural Effects in Nonseparable Systems Using Covariates," Boston College Working Papers in Economics 734, Boston College Department of Economics.
    12. Christoph Breunig, 2019. "Specification Testing in Nonparametric Instrumental Quantile Regression," Papers 1909.10129, arXiv.org.
    13. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    14. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    15. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    16. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    17. Andrews, Donald W.K., 2017. "Examples of L2-complete and boundedly-complete distributions," Journal of Econometrics, Elsevier, vol. 199(2), pages 213-220.
    18. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    19. Hiroaki Kaido & Kaspar Wüthrich, 2021. "Decentralization estimators for instrumental variable quantile regression models," Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
    20. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.26613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.