IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.10423.html

Nonparametric instrumental regression with right censored duration outcomes

Author

Listed:
  • Jad Beyhum

    (KU Leuven)

  • Jean-Pierre FLorens

    (Toulouse School of Economics)

  • Ingrid Van Keilegom

    (KU Leuven)

Abstract

This paper analyzes the effect of a discrete treatment Z on a duration T. The treatment is not randomly assigned. The confounding issue is treated using a discrete instrumental variable explaining the treatment and independent of the error term of the model. Our framework is nonparametric and allows for random right censoring. This specification generates a nonlinear inverse problem and the average treatment effect is derived from its solution. We provide local and global identification properties that rely on a nonlinear system of equations. We propose an estimation procedure to solve this system and derive rates of convergence and conditions under which the estimator is asymptotically normal. When censoring makes identification fail, we develop partial identification results. Our estimators exhibit good finite sample properties in simulations. We also apply our methodology to the Illinois Reemployment Bonus Experiment.

Suggested Citation

  • Jad Beyhum & Jean-Pierre FLorens & Ingrid Van Keilegom, 2020. "Nonparametric instrumental regression with right censored duration outcomes," Papers 2011.10423, arXiv.org.
  • Handle: RePEc:arx:papers:2011.10423
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.10423
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    2. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    3. Woodbury, Stephen A & Spiegelman, Robert G, 1987. "Bonuses to Workers and Employers to Reduce Unemployment: Randomized Trials in Illinois," American Economic Review, American Economic Association, vol. 77(4), pages 513-530, September.
    4. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    5. Jialiang Li & Jason Fine & Alan Brookhart, 2015. "Instrumental variable additive hazards models," Biometrics, The International Biometric Society, vol. 71(1), pages 122-130, March.
    6. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    7. Bijwaard, Govert E. & Ridder, Geert, 2005. "Correcting for selective compliance in a re-employment bonus experiment," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 77-111.
    8. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    9. Florens, Jean-Pierre & Simon, Guillaume, 2010. "Endogeneity and Instrumental Variables in Dynamic Models," TSE Working Papers 10-178, Toulouse School of Economics (TSE).
    10. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    11. Cazals, Catherine & Fève, Frédérique & Florens, Jean-Pierre & Simar, Léopold, 2016. "Nonparametric instrumental variables estimation for efficiency frontier," Journal of Econometrics, Elsevier, vol. 190(2), pages 349-359.
    12. Feve, Frederique & Florens, Jean-Pierre & Van Keilegom, Ingrid, 2018. "Estimation of Conditional Ranks and Tests of Exogeneity in Nonparametric Nonseparable Models," LIDAM Reprints ISBA 2018016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Berg, Gerard J. van den & Bonev, Petyo & Mammen, Enno, 2016. "Nonparametric instrumental variable methods for dynamic treatment evaluation," Working Papers 16-02, University of Mannheim, Department of Economics.
    14. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    15. Abbring, Jaap H & van den Berg, Gerard J, 2005. "Social experiments and intrumental variables with duration outcomes," Working Paper Series 2005:11, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    16. Anna, Petrenko, . "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(01).
    17. Brigham R. Frandsen, 2015. "Treatment Effects With Censoring and Endogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1745-1752, December.
    18. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    19. Florens, Jean-Pierre & Simon, Guillaume, 2010. "Endogeneity and Instrumental Variables in Dynamic Models," IDEI Working Papers 624, Institut d'Économie Industrielle (IDEI), Toulouse.
    20. Jaap H. Abbring & Gerard J. van den Berg, 2003. "The Nonparametric Identification of Treatment Effects in Duration Models," Econometrica, Econometric Society, vol. 71(5), pages 1491-1517, September.
    21. Dunker, Fabian & Florens, Jean-Pierre & Hohage, Thorsten & Johannes, Jan & Mammen, Enno, 2014. "Iterative estimation of solutions to noisy nonlinear operator equations in nonparametric instrumental regression," Journal of Econometrics, Elsevier, vol. 178(P3), pages 444-455.
    22. Frédérique Fève & Jean-Pierre Florens & Ingrid Van Keilegom, 2018. "Estimation of Conditional Ranks and Tests of Exogeneity in Nonparametric Nonseparable Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 334-345, April.
    23. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    24. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilles Crommen & Jad Beyhum & Ingrid Van Keilegom, 2024. "An instrumental variable approach under dependent censoring," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(2), pages 473-495, June.
    2. Gilles Crommen & Jean-Pierre Florens & Ingrid Van Keilegom, 2025. "Tests of exogeneity in duration models with censored data," Papers 2510.26613, arXiv.org, revised Dec 2025.
    3. Lorenzo Tedesco & Jad Beyhum & Ingrid Van Keilegom, 2023. "Instrumental variable estimation of the proportional hazards model by presmoothing," Papers 2309.02183, arXiv.org.
    4. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2024. "Instrumental variable quantile regression under random right censoring," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 21-36.
    5. Gilles Crommen & Jad Beyhum & Ingrid Van Keilegom, 2025. "Estimation of the complier causal hazard ratio under dependent censoring," Papers 2504.02096, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jad Beyhum & Jean-Pierre Florens & Ingrid Van Keilegom, 2021. "A nonparametric instrumental approach to endogeneity in competing risks models," Papers 2105.00946, arXiv.org.
    2. Gilles Crommen & Jean-Pierre Florens & Ingrid Van Keilegom, 2025. "Tests of exogeneity in duration models with censored data," Papers 2510.26613, arXiv.org, revised Dec 2025.
    3. Gilles Crommen & Jad Beyhum & Ingrid Van Keilegom, 2025. "Estimation of the complier causal hazard ratio under dependent censoring," Papers 2504.02096, arXiv.org.
    4. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2024. "Instrumental variable quantile regression under random right censoring," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 21-36.
    5. Babii, Andrii & Florens, Jean-Pierre, 2025. "Are Unobservables Separable?," Econometric Theory, Cambridge University Press, vol. 41(3), pages 551-583, June.
    6. Chesher, Andrew & Rosen, Adam M., 2020. "Generalized instrumental variable models, methods, and applications," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 1-110, Elsevier.
    7. Centorrino, Samuele & Fève, Frédérique & Florens, Jean-Pierre, 2025. "Iterative estimation of nonparametric regressions with continuous endogenous variables and discrete instruments," Journal of Econometrics, Elsevier, vol. 247(C).
    8. German Blanco & Xuan Chen & Carlos A. Flores & Alfonso Flores-Lagunes, 2020. "Bounds on Average and Quantile Treatment Effects on Duration Outcomes Under Censoring, Selection, and Noncompliance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 901-920, October.
    9. Jad Beyhum, 2021. "Two-stage least squares with a randomly right censored outcome," Papers 2110.05107, arXiv.org.
    10. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    11. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    12. Chiappori, Pierre-André & Komunjer, Ivana & Kristensen, Dennis, 2015. "Nonparametric identification and estimation of transformation models," Journal of Econometrics, Elsevier, vol. 188(1), pages 22-39.
    13. Ying-Ying Lee, 2014. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Economics Series Working Papers 706, University of Oxford, Department of Economics.
    14. Chesher, Andrew & Kim, Dongwoo & Rosen, Adam M., 2023. "IV methods for Tobit models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1700-1724.
    15. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
    16. Wenlong Ji & Lihua Lei & Asher Spector, 2023. "Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects," Papers 2310.08115, arXiv.org, revised Nov 2024.
    17. Vira Semenova, 2023. "Debiased Machine Learning of Aggregated Intersection Bounds and Other Causal Parameters," Papers 2303.00982, arXiv.org, revised May 2025.
    18. Hong, Shengjie, 2017. "Inference in semiparametric conditional moment models with partial identification," Journal of Econometrics, Elsevier, vol. 196(1), pages 156-179.
    19. Armstrong, Timothy B., 2018. "On the choice of test statistic for conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 203(2), pages 241-255.
    20. Pedro H. C. Sant’Anna, 2021. "Nonparametric Tests for Treatment Effect Heterogeneity With Duration Outcomes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 816-832, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.10423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.