IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.22908.html
   My bibliography  Save this paper

Bridging Stratification and Regression Adjustment: Batch-Adaptive Stratification with Post-Design Adjustment in Randomized Experiments

Author

Listed:
  • Zikai Li

Abstract

To increase statistical efficiency in a randomized experiment, researchers often use stratification (i.e., blocking) in the design stage. However, conventional practices of stratification fail to exploit valuable information about the predictive relationship between covariates and potential outcomes. In this paper, I introduce an adaptive stratification procedure for increasing statistical efficiency when some information is available about the relationship between covariates and potential outcomes. I show that, in a paired design, researchers can rematch observations across different batches. For inference, I propose a stratified estimator that allows for nonparametric covariate adjustment. I then discuss the conditions under which researchers should expect gains in efficiency from stratification. I show that stratification complements rather than substitutes for regression adjustment, insuring against adjustment error even when researchers plan to use covariate adjustment. To evaluate the performance of the method relative to common alternatives, I conduct simulations using both synthetic data and more realistic data derived from a political science experiment. Results demonstrate that the gains in precision and efficiency can be substantial.

Suggested Citation

  • Zikai Li, 2025. "Bridging Stratification and Regression Adjustment: Batch-Adaptive Stratification with Post-Design Adjustment in Randomized Experiments," Papers 2510.22908, arXiv.org.
  • Handle: RePEc:arx:papers:2510.22908
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.22908
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oliver Hines & Oliver Dukes & Karla Diaz-Ordaz & Stijn Vansteelandt, 2022. "Demystifying Statistical Learning Based on Efficient Influence Functions," The American Statistician, Taylor & Francis Journals, vol. 76(3), pages 292-304, July.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Moore, Ryan T. & Moore, Sally A., 2013. "Blocking for Sequential Political Experiments," Political Analysis, Cambridge University Press, vol. 21(4), pages 507-523.
    4. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," Papers 2206.07845, arXiv.org.
    5. Christopher Harshaw & Fredrik Sävje & Daniel A. Spielman & Peng Zhang, 2024. "Balancing Covariates in Randomized Experiments with the Gram–Schmidt Walk Design," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(548), pages 2934-2946, October.
    6. Xinran Li & Peng Ding, 2020. "Rerandomization and regression adjustment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 241-268, February.
    7. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," American Economic Review, American Economic Association, vol. 112(12), pages 3911-3940, December.
    8. Moore, Ryan T., 2012. "Multivariate Continuous Blocking to Improve Political Science Experiments," Political Analysis, Cambridge University Press, vol. 20(4), pages 460-479.
    9. Yuehao Bai & Joseph P. Romano & Azeem M. Shaikh, 2022. "Inference in Experiments With Matched Pairs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1726-1737, October.
    10. Max Tabord-Meehan, 2023. "Stratification Trees for Adaptive Randomisation in Randomised Controlled Trials," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(5), pages 2646-2673.
    11. Bikram Karmakar, 2022. "An approximation algorithm for blocking of an experimental design," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1726-1750, November.
    12. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yuhao & Li, Xinran, 2025. "Asymptotic theory of the best-choice rerandomization using the Mahalanobis distance," Journal of Econometrics, Elsevier, vol. 251(C).
    2. Jiang, Liang & Li, Liyao & Miao, Ke & Zhang, Yichong, 2025. "Adjustments with many regressors under covariate-adaptive randomizations," Journal of Econometrics, Elsevier, vol. 249(PB).
    3. Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023. "Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations," Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
    4. Bokelmann, Björn & Lessmann, Stefan, 2025. "Heteroscedasticity-aware stratified sampling to improve uplift modeling," European Journal of Operational Research, Elsevier, vol. 325(1), pages 118-131.
    5. Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Nov 2025.
    6. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
    7. Yuehao Bai & Xun Huang & Joseph P. Romano & Azeem M. Shaikh & Max Tabord-Meehan, 2025. "A New Design-Based Variance Estimator for Finely Stratified Experiments," Papers 2503.10851, arXiv.org, revised May 2025.
    8. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    9. David McKenzie, 2025. "Designing and analysing powerful experiments: practical tips for applied researchers," Fiscal Studies, John Wiley & Sons, vol. 46(3), pages 305-322, September.
    10. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    11. Bugni, Federico A. & Gao, Mengsi, 2023. "Inference under covariate-adaptive randomization with imperfect compliance," Journal of Econometrics, Elsevier, vol. 237(1).
    12. Jinglong Zhao, 2023. "Adaptive Neyman Allocation," Papers 2309.08808, arXiv.org, revised Sep 2025.
    13. Edward Wu & Johann A. Gagnon-Bartsch, 2021. "Design-Based Covariate Adjustments in Paired Experiments," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 109-132, February.
    14. Bai, Yuehao & Liu, Jizhou & Shaikh, Azeem M. & Tabord-Meehan, Max, 2024. "Inference in cluster randomized trials with matched pairs," Journal of Econometrics, Elsevier, vol. 245(1).
    15. Abhinandan Dalal & Eric J. Tchetgen Tchetgen, 2025. "Partial Identification of Causal Effects for Endogenous Continuous Treatments," Papers 2508.13946, arXiv.org.
    16. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord‐Meehan, 2024. "Revisiting the analysis of matched‐pair and stratified experiments in the presence of attrition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 256-268, March.
    17. Laurent Davezies & Guillaume Hollard & Pedro Vergara Merino, 2024. "Revisiting Randomization with the Cube Method," Papers 2407.13613, arXiv.org, revised Jul 2025.
    18. Masahiro Kato & Akihiro Oga & Wataru Komatsubara & Ryo Inokuchi, 2024. "Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices," Papers 2403.03589, arXiv.org, revised Jun 2024.
    19. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.22908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.