IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v251y2025ics0304407625001034.html
   My bibliography  Save this article

Asymptotic theory of the best-choice rerandomization using the Mahalanobis distance

Author

Listed:
  • Wang, Yuhao
  • Li, Xinran

Abstract

Rerandomization, a design that utilizes pretreatment covariates and improves their balance between different treatment groups, has received attention recently in both theory and practice. From a survey by Bruhn and McKenzie (2009), there are at least two types of rerandomization that are used in practice: the first rerandomizes the treatment assignment until covariate imbalance is below a prespecified threshold; the second randomizes the treatment assignment multiple times and chooses the one with the best covariate balance. In this paper we will consider the second type of rerandomization, namely the best-choice rerandomization, whose theory and inference are still lacking in the literature. In particular, we will focus on the best-choice rerandomization that uses the Mahalanobis distance to measure covariate imbalance, which is one of the most commonly used imbalance measure for multivariate covariates and is invariant to affine transformations of covariates. We will study the large-sample repeatedly sampling properties of the best-choice rerandomization, allowing both the number of covariates and the number of tried complete randomizations to increase with the sample size. We show that the asymptotic distribution of the difference-in-means estimator is more concentrated around the true average treatment effect under rerandomization than under the complete randomization, and propose large-sample accurate confidence intervals for rerandomization that are shorter than that for the completely randomized experiment. We further demonstrate that, with moderate number of covariates and with the number of tried randomizations increasing polynomially with the sample size, the best-choice rerandomization can achieve the ideally optimal precision that one can expect even with perfectly balanced covariates. The developed theory and methods for rerandomization are also illustrated using real field experiments.

Suggested Citation

  • Wang, Yuhao & Li, Xinran, 2025. "Asymptotic theory of the best-choice rerandomization using the Mahalanobis distance," Journal of Econometrics, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:econom:v:251:y:2025:i:c:s0304407625001034
    DOI: 10.1016/j.jeconom.2025.106049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407625001034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2025.106049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:251:y:2025:i:c:s0304407625001034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.