Partial Identification of Causal Effects for Endogenous Continuous Treatments
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
- Oliver Hines & Oliver Dukes & Karla Diaz-Ordaz & Stijn Vansteelandt, 2022. "Demystifying Statistical Learning Based on Efficient Influence Functions," The American Statistician, Taylor & Francis Journals, vol. 76(3), pages 292-304, July.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Heckman, James J. & UrzĂșa, Sergio, 2010.
"Comparing IV with structural models: What simple IV can and cannot identify,"
Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
- Heckman, James J. & Urzua, Sergio, 2009. "Comparing IV with Structural Models: What Simple IV Can and Cannot Identify," IZA Discussion Papers 3980, Institute of Labor Economics (IZA).
- James Heckman & Sergio Urzua, 2010. "Comparing IV with structural models: what simple IV can and cannot identify," CeMMAP working papers CWP08/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sergio Urzua & James J. Heckman, 2009. "Comparing IV with Structural Models: What Simple IV Can and Cannot Identify," Working Papers 200906, Geary Institute, University College Dublin.
- James J. Heckman & Sergio Urzua, 2009. "Comparing IV With Structural Models: What Simple IV Can and Cannot Identify," NBER Working Papers 14706, National Bureau of Economic Research, Inc.
- Tan, Zhiqiang, 2006. "A Distributional Approach for Causal Inference Using Propensity Scores," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1619-1637, December.
- Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015.
"Some new asymptotic theory for least squares series: Pointwise and uniform results,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Some New Asymptotic Theory for Least Squares Series: Pointwise and Uniform Results," Papers 1212.0442, arXiv.org, revised Jun 2015.
- Colin B. Fogarty & Kwonsang Lee & Rachel R. Kelz & Luke J. Keele, 2021. "Biased Encouragements and Heterogeneous Effects in an Instrumental Variable Study of Emergency General Surgical Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1625-1636, October.
- Hua Yun Chen, 2007. "A Semiparametric Odds Ratio Model for Measuring Association," Biometrics, The International Biometric Society, vol. 63(2), pages 413-421, June.
- Cai, Zongwu, 2001. "Weighted Nadaraya-Watson regression estimation," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 307-318, February.
- Huang, Jianhua Z., 2003. "Asymptotics for polynomial spline regression under weak conditions," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 207-216, November.
- Jacob Dorn & Kevin Guo, 2023. "Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2645-2657, October.
- Abhinandan Dalal & Patrick Blobaum & Shiva Kasiviswanathan & Aaditya Ramdas, 2024. "Anytime-Valid Inference for Double/Debiased Machine Learning of Causal Parameters," Papers 2408.09598, arXiv.org, revised Sep 2024.
- Farooq, Muhammad & Steinwart, Ingo, 2017. "An SVM-like approach for expectile regression," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 159-181.
- Cattaneo, Matias D. & Farrell, Max H., 2013. "Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators," Journal of Econometrics, Elsevier, vol. 174(2), pages 127-143.
- Eric J. Tchetgen Tchetgen & James M. Robins & Andrea Rotnitzky, 2010. "On doubly robust estimation in a semiparametric odds ratio model," Biometrika, Biometrika Trust, vol. 97(1), pages 171-180.
- Rosenbaum, Paul R., 2010. "Design Sensitivity and Efficiency in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 692-702.
- Jacob Dorn & Kevin Guo, 2021. "Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing," Papers 2102.04543, arXiv.org, revised Aug 2023.
- Leamer, Edward E, 1985. "Sensitivity Analyses Would Help," American Economic Review, American Economic Association, vol. 75(3), pages 308-313, June.
- Jeffrey Zhang & Dylan S Small & Siyu Heng, 2024. "Sensitivity analysis for matched observational studies with continuous exposures and binary outcomes," Biometrika, Biometrika Trust, vol. 111(4), pages 1349-1368.
- Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
- Wang Miao & Zhi Geng & Eric J Tchetgen Tchetgen, 2018. "Identifying causal effects with proxy variables of an unmeasured confounder," Biometrika, Biometrika Trust, vol. 105(4), pages 987-993.
- Melody Huang & Samuel D Pimentel, 2025. "Variance-based sensitivity analysis for weighting estimators results in more informative bounds," Biometrika, Biometrika Trust, vol. 112(1), pages 235-240.
- Vira Semenova & Victor Chernozhukov, 2021. "Debiased machine learning of conditional average treatment effects and other causal functions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 264-289.
- Edward H. Kennedy & Zongming Ma & Matthew D. McHugh & Dylan S. Small, 2017. "Non-parametric methods for doubly robust estimation of continuous treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1229-1245, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Sung Jae Jun & Sokbae Lee, 2024.
"Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
- Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
- Aditya Ghosh & Dominik Rothenhausler, 2025. "Assumption-robust Causal Inference," Papers 2505.08729, arXiv.org, revised Jun 2025.
- Melody Huang & Cory McCartan, 2025. "Relative Bias Under Imperfect Identification in Observational Causal Inference," Papers 2507.23743, arXiv.org.
- Zequn Jin & Gaoqian Xu & Xi Zheng & Yahong Zhou, 2025. "Policy Learning under Unobserved Confounding: A Robust and Efficient Approach," Papers 2507.20550, arXiv.org.
- Sung Jae Jun & Sokbae (Simon) Lee, 2020. "Causal inference in case-control studies," CeMMAP working papers CWP19/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2025.
"Semiparametric single-index estimation for average treatment effects,"
Econometric Reviews, Taylor & Francis Journals, vol. 44(6), pages 843-885, July.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Jan 2025.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Monash Econometrics and Business Statistics Working Papers 10/22, Monash University, Department of Econometrics and Business Statistics.
- Phillip Heiler & Michael C. Knaus, 2021.
"Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments,"
Papers
2110.01427, arXiv.org, revised Aug 2023.
- Heiler, Phillip & Knaus, Michael C., 2022. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," IZA Discussion Papers 15580, Institute of Labor Economics (IZA).
- Matthew A. Masten & Alexandre Poirier & Muyang Ren, 2025. "A General Approach to Relaxing Unconfoundedness," Papers 2501.15400, arXiv.org.
- Rahul Singh, 2020. "Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments," Papers 2012.10315, arXiv.org, revised Mar 2023.
- Nora Bearth & Michael Lechner, 2024. "Causal Machine Learning for Moderation Effects," Papers 2401.08290, arXiv.org, revised Jan 2025.
- Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
- Jacob Dorn & Kevin Guo & Nathan Kallus, 2021. "Doubly-Valid/Doubly-Sharp Sensitivity Analysis for Causal Inference with Unmeasured Confounding," Papers 2112.11449, arXiv.org, revised Jul 2022.
- Kazuhiko Shinoda & Takahiro Hoshino, 2022. "Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions," Papers 2212.13145, arXiv.org.
- Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression," Papers 2112.14249, arXiv.org, revised May 2025.
- Amanda Coston & Edward H. Kennedy, 2022. "The role of the geometric mean in case-control studies," Papers 2207.09016, arXiv.org.
- Michael Jansson & Demian Pouzo, 2017.
"Towards a General Large Sample Theory for Regularized Estimators,"
Papers
1712.07248, arXiv.org, revised Jul 2020.
- Michael Jansson & Demian Pouzo, 2019. "Towards a general large sample theory for regularized estimators," CeMMAP working papers CWP63/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2022.
"The influence function of semiparametric estimators,"
Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The influence function of semiparametric estimators," CeMMAP working papers 44/15, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The influence function of semiparametric estimators," CeMMAP working papers CWP44/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2017. "The influence function of semiparametric estimators," CeMMAP working papers CWP06/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The Influence Function of Semiparametric Estimators," CIRJE F-Series CIRJE-F-985, CIRJE, Faculty of Economics, University of Tokyo.
- Hidehiko Ichimura & Whitney K. Newey, 2017. "The influence function of semiparametric estimators," CeMMAP working papers 06/17, Institute for Fiscal Studies.
- Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2025-09-15 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.13946. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.