IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.23743.html
   My bibliography  Save this paper

Relative Bias Under Imperfect Identification in Observational Causal Inference

Author

Listed:
  • Melody Huang
  • Cory McCartan

Abstract

To conduct causal inference in observational settings, researchers must rely on certain identifying assumptions. In practice, these assumptions are unlikely to hold exactly. This paper considers the bias of selection-on-observables, instrumental variables, and proximal inference estimates under violations of their identifying assumptions. We develop bias expressions for IV and proximal inference that show how violations of their respective assumptions are amplified by any unmeasured confounding in the outcome variable. We propose a set of sensitivity tools that quantify the sensitivity of different identification strategies, and an augmented bias contour plot visualizes the relationship between these strategies. We argue that the act of choosing an identification strategy implicitly expresses a belief about the degree of violations that must be present in alternative identification strategies. Even when researchers intend to conduct an IV or proximal analysis, a sensitivity analysis comparing different identification strategies can help to better understand the implications of each set of assumptions. Throughout, we compare the different approaches on a re-analysis of the impact of state surveillance on the incidence of protest in Communist Poland.

Suggested Citation

  • Melody Huang & Cory McCartan, 2025. "Relative Bias Under Imperfect Identification in Observational Causal Inference," Papers 2507.23743, arXiv.org.
  • Handle: RePEc:arx:papers:2507.23743
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.23743
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.23743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.