IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.23743.html
   My bibliography  Save this paper

Relative Bias Under Imperfect Identification in Observational Causal Inference

Author

Listed:
  • Melody Huang
  • Cory McCartan

Abstract

To conduct causal inference in observational settings, researchers must rely on certain identifying assumptions. In practice, these assumptions are unlikely to hold exactly. This paper considers the bias of selection-on-observables, instrumental variables, and proximal inference estimates under violations of their identifying assumptions. We develop bias expressions for IV and proximal inference that show how violations of their respective assumptions are amplified by any unmeasured confounding in the outcome variable. We propose a set of sensitivity tools that quantify the sensitivity of different identification strategies, and an augmented bias contour plot visualizes the relationship between these strategies. We argue that the act of choosing an identification strategy implicitly expresses a belief about the degree of violations that must be present in alternative identification strategies. Even when researchers intend to conduct an IV or proximal analysis, a sensitivity analysis comparing different identification strategies can help to better understand the implications of each set of assumptions. Throughout, we compare the different approaches on a re-analysis of the impact of state surveillance on the incidence of protest in Communist Poland.

Suggested Citation

  • Melody Huang & Cory McCartan, 2025. "Relative Bias Under Imperfect Identification in Observational Causal Inference," Papers 2507.23743, arXiv.org.
  • Handle: RePEc:arx:papers:2507.23743
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.23743
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hager, Anselm & Krakowski, Krzysztof, 2022. "Does State Repression Spark Protests? Evidence from Secret Police Surveillance in Communist Poland," American Political Science Review, Cambridge University Press, vol. 116(2), pages 564-579, May.
    2. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    3. Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
    4. Paul R. Rosenbaum, 2004. "Design sensitivity in observational studies," Biometrika, Biometrika Trust, vol. 91(1), pages 153-164, March.
    5. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    6. Jinyong Hahn & Jerry Hausman, 2010. "Estimation with Valid and Invalid Instruments," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 25-57, National Bureau of Economic Research, Inc.
    7. Jacob Dorn & Kevin Guo, 2021. "Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing," Papers 2102.04543, arXiv.org, revised Aug 2023.
    8. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    9. Tan, Zhiqiang, 2006. "A Distributional Approach for Causal Inference Using Propensity Scores," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1619-1637, December.
    10. Jacob Dorn & Kevin Guo, 2023. "Sharp Sensitivity Analysis for Inverse Propensity Weighting via Quantile Balancing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2645-2657, October.
    11. Guanglei Hong & Fan Yang & Xu Qin, 2021. "Did you conduct a sensitivity analysis? A new weighting‐based approach for evaluations of the average treatment effect for the treated," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 227-254, January.
    12. repec:adr:anecst:y:2005:i:79-80:p:02 is not listed on IDEAS
    13. Carlos Cinelli & Chad Hazlett, 2020. "Making sense of sensitivity: extending omitted variable bias," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 39-67, February.
    14. Qingyuan Zhao & Dylan S. Small & Bhaswar B. Bhattacharya, 2019. "Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(4), pages 735-761, September.
    15. Hartman, Erin & Huang, Melody, 2024. "Sensitivity Analysis for Survey Weights," Political Analysis, Cambridge University Press, vol. 32(1), pages 1-16, January.
    16. Yifan Cui & Hongming Pu & Xu Shi & Wang Miao & Eric Tchetgen Tchetgen, 2024. "Semiparametric Proximal Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(546), pages 1348-1359, April.
    17. Melody Huang & Samuel D Pimentel, 2025. "Variance-based sensitivity analysis for weighting estimators results in more informative bounds," Biometrika, Biometrika Trust, vol. 112(1), pages 235-240.
    18. Li Xu & Chris Gotwalt & Yili Hong & Caleb B. King & William Q. Meeker, 2020. "Applications of the Fractional-Random-Weight Bootstrap," The American Statistician, Taylor & Francis Journals, vol. 74(4), pages 345-358, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zequn Jin & Gaoqian Xu & Xi Zheng & Yahong Zhou, 2025. "Policy Learning under Unobserved Confounding: A Robust and Efficient Approach," Papers 2507.20550, arXiv.org.
    2. Abhinandan Dalal & Eric J. Tchetgen Tchetgen, 2025. "Partial Identification of Causal Effects for Endogenous Continuous Treatments," Papers 2508.13946, arXiv.org.
    3. Aditya Ghosh & Dominik Rothenhausler, 2025. "Assumption-robust Causal Inference," Papers 2505.08729, arXiv.org, revised Jun 2025.
    4. Matthew A. Masten & Alexandre Poirier & Muyang Ren, 2025. "A General Approach to Relaxing Unconfoundedness," Papers 2501.15400, arXiv.org.
    5. Ashesh Rambachan & Amanda Coston & Edward Kennedy, 2022. "Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding," Papers 2212.09844, arXiv.org, revised Nov 2025.
    6. Jacob Dorn & Kevin Guo & Nathan Kallus, 2021. "Doubly-Valid/Doubly-Sharp Sensitivity Analysis for Causal Inference with Unmeasured Confounding," Papers 2112.11449, arXiv.org, revised Jul 2022.
    7. Xinkun Nie & Guido Imbens & Stefan Wager, 2021. "Covariate Balancing Sensitivity Analysis for Extrapolating Randomized Trials across Locations," Papers 2112.04723, arXiv.org.
    8. Bo Zhang & Eric J. Tchetgen Tchetgen, 2022. "A semi‐parametric approach to model‐based sensitivity analysis in observational studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 668-691, December.
    9. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    10. Colnet Bénédicte & Josse Julie & Varoquaux Gaël & Scornet Erwan, 2022. "Causal effect on a target population: A sensitivity analysis to handle missing covariates," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 372-414, January.
    11. Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Betts, Alexander & Flinder Stierna, Maria & Omata, Naohiko & Sterck, Olivier, 2023. "Refugees welcome? Inter-group interaction and host community attitude formation," World Development, Elsevier, vol. 161(C).
    13. Matthew A. Masten & Alexandre Poirier & Linqi Zhang, 2024. "Assessing Sensitivity to Unconfoundedness: Estimation and Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(1), pages 1-13, January.
    14. Betts,Alexander Milton Stedman & Stierna,Maria Flinder & Omata,Naohiko & Sterck,Olivier Christian Brigitte, 2022. "Social Cohesion and Refugee-Host Interactions : Evidence from East Africa," Policy Research Working Paper Series 9917, The World Bank.
    15. St'ephane Bonhomme & Martin Weidner, 2018. "Minimizing Sensitivity to Model Misspecification," Papers 1807.02161, arXiv.org, revised Oct 2021.
    16. Deepankar Basu, 2023. "Formal Covariate Benchmarking to Bound Omitted Variable Bias," Papers 2306.10562, arXiv.org.
    17. Paul R. Rosenbaum, 2015. "Bahadur Efficiency of Sensitivity Analyses in Observational Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 205-217, March.
    18. Matthew A. Masten & Alexandre Poirier, 2022. "The Effect of Omitted Variables on the Sign of Regression Coefficients," Papers 2208.00552, arXiv.org, revised Jun 2025.
    19. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.
    20. KITAGAWA, Toru & SAWADA, Masayuki, 2023. "Linear Regressions, Shorts to Long," Discussion Paper Series 747, Institute of Economic Research, Hitotsubashi University.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.23743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.