IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.02986.html
   My bibliography  Save this paper

FR-LUX: Friction-Aware, Regime-Conditioned Policy Optimization for Implementable Portfolio Management

Author

Listed:
  • Jian'an Zhang

Abstract

Transaction costs and regime shifts are major reasons why paper portfolios fail in live trading. We introduce FR-LUX (Friction-aware, Regime-conditioned Learning under eXecution costs), a reinforcement learning framework that learns after-cost trading policies and remains robust across volatility-liquidity regimes. FR-LUX integrates three ingredients: (i) a microstructure-consistent execution model combining proportional and impact costs, directly embedded in the reward; (ii) a trade-space trust region that constrains changes in inventory flow rather than logits, yielding stable low-turnover updates; and (iii) explicit regime conditioning so the policy specializes to LL/LH/HL/HH states without fragmenting the data. On a 4 x 5 grid of regimes and cost levels with multiple random seeds, FR-LUX achieves the top average Sharpe ratio with narrow bootstrap confidence intervals, maintains a flatter cost-performance slope than strong baselines, and attains superior risk-return efficiency for a given turnover budget. Pairwise scenario-level improvements are strictly positive and remain statistically significant after multiple-testing corrections. We provide formal guarantees on optimality under convex frictions, monotonic improvement under a KL trust region, long-run turnover bounds and induced inaction bands due to proportional costs, positive value advantage for regime-conditioned policies, and robustness to cost misspecification. The methodology is implementable: costs are calibrated from standard liquidity proxies, scenario-level inference avoids pseudo-replication, and all figures and tables are reproducible from released artifacts.

Suggested Citation

  • Jian'an Zhang, 2025. "FR-LUX: Friction-Aware, Regime-Conditioned Policy Optimization for Implementable Portfolio Management," Papers 2510.02986, arXiv.org.
  • Handle: RePEc:arx:papers:2510.02986
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.02986
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luyang Chen & Markus Pelger & Jason Zhu, 2024. "Deep Learning in Asset Pricing," Management Science, INFORMS, vol. 70(2), pages 714-750, February.
    2. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    3. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    4. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    5. Kingsley Y. L. Fong & Craig W. Holden & Charles A. Trzcinka, 2017. "What Are the Best Liquidity Proxies for Global Research?," Review of Finance, European Finance Association, vol. 21(4), pages 1355-1401.
    6. Barillas, Francisco & Kan, Raymond & Robotti, Cesare & Shanken, Jay, 2020. "Model Comparison with Sharpe Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(6), pages 1840-1874, September.
    7. Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020. "Shrinking the cross-section," Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
    8. Collin-Dufresne, Pierre & Daniel, Kent & Sağlam, Mehmet, 2020. "Liquidity regimes and optimal dynamic asset allocation," Journal of Financial Economics, Elsevier, vol. 136(2), pages 379-406.
    9. Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    10. Joseph P. Romano & Michael Wolf, 2005. "Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 94-108, March.
    11. Filippou, Ilias & Maurer, Thomas A. & Pezzo, Luca & Taylor, Mark P., 2024. "Importance of transaction costs for asset allocation in foreign exchange markets," Journal of Financial Economics, Elsevier, vol. 159(C).
    12. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    13. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    14. Francisco Barillas & Jay Shanken, 2018. "Comparing Asset Pricing Models," Journal of Finance, American Finance Association, vol. 73(2), pages 715-754, April.
    15. Victor DeMiguel & Alberto Martín-Utrera & Francisco J Nogales & Raman Uppal, 2020. "A Transaction-Cost Perspective on the Multitude of Firm Characteristics," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2180-2222.
    16. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    17. Gabor Pinter & Chaojun Wang & Junyuan Zou, 2024. "Size Discount and Size Penalty: Trading Costs in Bond Markets," The Review of Financial Studies, Society for Financial Studies, vol. 37(7), pages 2156-2190.
    18. Andrew W. Lo, 2002. "The Statistics of Sharpe Ratios," Financial Analysts Journal, Taylor & Francis Journals, vol. 58(4), pages 36-52, July.
    19. Ledoit, Olivier & Wolf, Michael, 2025. "Markowitz portfolios under transaction costs," The Quarterly Review of Economics and Finance, Elsevier, vol. 100(C).
    20. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    21. Robert Novy-Marx & Mihail Velikov, 2016. "A Taxonomy of Anomalies and Their Trading Costs," The Review of Financial Studies, Society for Financial Studies, vol. 29(1), pages 104-147.
    22. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    23. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    24. Joel Hasbrouck, 2009. "Trading Costs and Returns for U.S. Equities: Estimating Effective Costs from Daily Data," Journal of Finance, American Finance Association, vol. 64(3), pages 1445-1477, June.
    25. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    26. Goyenko, Ruslan Y. & Holden, Craig W. & Trzcinka, Charles A., 2009. "Do liquidity measures measure liquidity?," Journal of Financial Economics, Elsevier, vol. 92(2), pages 153-181, May.
    27. repec:oup:rfinst:v:21:y:2017:i:4:p:1355-1401. is not listed on IDEAS
    28. Alan Moreira & Tyler Muir, 2017. "Volatility-Managed Portfolios," Journal of Finance, American Finance Association, vol. 72(4), pages 1611-1644, August.
    29. Victor DeMiguel & Alberto Martín-Utrera & Francisco J Nogales & Raman Uppal & Andrew KarolyiEditor, 2020. "A Transaction-Cost Perspective on the Multitude of Firm Characteristics," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2180-2222.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fieberg, Christian & Liedtke, Gerrit & Zaremba, Adam & Cakici, Nusret, 2025. "A factor model for the cross-section of country equity risk premia," Journal of Banking & Finance, Elsevier, vol. 171(C).
    2. Smith, Simon C., 2022. "Time-variation, multiple testing, and the factor zoo," International Review of Financial Analysis, Elsevier, vol. 84(C).
    3. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    4. Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
    5. Guilherme V. Moura & Andr'e P. Santos & Hudson S. Torrent, 2025. "Variable selection for minimum-variance portfolios," Papers 2508.14986, arXiv.org.
    6. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    7. Li, Sicong & DeMiguel, Victor & Martín-Utrera, Alberto, 2024. "Comparing factor models with price-impact costs," Journal of Financial Economics, Elsevier, vol. 162(C).
    8. Sun, Chuanping, 2024. "Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach," Journal of Empirical Finance, Elsevier, vol. 77(C).
    9. Simon, Frederik & Weibels, Sebastian & Zimmermann, Tom, 2025. "Deep parametric portfolio policies," CFR Working Papers 23-01, University of Cologne, Centre for Financial Research (CFR), revised 2025.
    10. Doron Avramov & Si Cheng & Lior Metzker & Stefan Voigt, 2023. "Integrating Factor Models," Journal of Finance, American Finance Association, vol. 78(3), pages 1593-1646, June.
    11. Feng, Guanhao & He, Jingyu, 2022. "Factor investing: A Bayesian hierarchical approach," Journal of Econometrics, Elsevier, vol. 230(1), pages 183-200.
    12. Yonghe Lu & Yanrong Yang & Terry Zhang, 2024. "Double Descent in Portfolio Optimization: Dance between Theoretical Sharpe Ratio and Estimation Accuracy," Papers 2411.18830, arXiv.org.
    13. Yuxiao Jiao & Guofu Zhou & Wu Zhu & Yingzi Zhu, 2025. "Interpretable Factors of Firm Characteristics," Papers 2508.02253, arXiv.org.
    14. Wang, Chuyu & Zhang, Guanglong, 2025. "In the shadows of opacity: Firm information quality and latent factor model performance," International Review of Financial Analysis, Elsevier, vol. 100(C).
    15. Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
    16. Avramov, D. & Ge, S. & Li, S. & Linton, O. B., 2025. "Dual Industry Effects and Cross-Stock Predictability," Janeway Institute Working Papers 2506, Faculty of Economics, University of Cambridge.
    17. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).
    18. Langlois, Hugues, 2023. "What matters in a characteristic?," Journal of Financial Economics, Elsevier, vol. 149(1), pages 52-72.
    19. Kazuhiro Hiraki & George Skiadopoulos, 2023. "The Contribution of Transaction Costs to Expected Stock Returns: A Novel Measure," Working Papers 946, Queen Mary University of London, School of Economics and Finance.
    20. Yin, Zhengnan & O’Sullivan, Niall & Sherman, Meadhbh, 2024. "The liquidity timing ability of mutual funds," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.02986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.