IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.17180.html
   My bibliography  Save this paper

Regularizing Extrapolation in Causal Inference

Author

Listed:
  • David Arbour
  • Harsh Parikh
  • Bijan Niknam
  • Elizabeth Stuart
  • Kara Rudolph
  • Avi Feller

Abstract

Many common estimators in machine learning and causal inference are linear smoothers, where the prediction is a weighted average of the training outcomes. Some estimators, such as ordinary least squares and kernel ridge regression, allow for arbitrarily negative weights, which improve feature imbalance but often at the cost of increased dependence on parametric modeling assumptions and higher variance. By contrast, estimators like importance weighting and random forests (sometimes implicitly) restrict weights to be non-negative, reducing dependence on parametric modeling and variance at the cost of worse imbalance. In this paper, we propose a unified framework that directly penalizes the level of extrapolation, replacing the current practice of a hard non-negativity constraint with a soft constraint and corresponding hyperparameter. We derive a worst-case extrapolation error bound and introduce a novel "bias-bias-variance" tradeoff, encompassing biases due to feature imbalance, model misspecification, and estimator variance; this tradeoff is especially pronounced in high dimensions, particularly when positivity is poor. We then develop an optimization procedure that regularizes this bound while minimizing imbalance and outline how to use this approach as a sensitivity analysis for dependence on parametric modeling assumptions. We demonstrate the effectiveness of our approach through synthetic experiments and a real-world application, involving the generalization of randomized controlled trial estimates to a target population of interest.

Suggested Citation

  • David Arbour & Harsh Parikh & Bijan Niknam & Elizabeth Stuart & Kara Rudolph & Avi Feller, 2025. "Regularizing Extrapolation in Causal Inference," Papers 2509.17180, arXiv.org.
  • Handle: RePEc:arx:papers:2509.17180
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.17180
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.17180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.