IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.14529.html
   My bibliography  Save this paper

Unbiased Rough Integrators and No Free Lunch in Rough-Path-Based Market Models

Author

Listed:
  • Tomoyuki Ichiba
  • Qijin Shi

Abstract

Built to generalise classical stochastic calculus, rough path theory provides a natural and pathwise framework to model continuous non-semimartingale assets. This paper investigates the ultimate capacity of this framework to support frictionless continuous No-Free-Lunch markets \`a la Kreps-Yan. We establish a ``Rough Kreps-Yan" theorem, which links our No Controlled Free Lunch (NCFL) condition to the unbiasedness of the driver of the price process as a rough integrator. The central work of this paper is a complete classification of these unbiased rough integrators with respect to different classes of controlled paths as integrands. As the set of admissible trading strategies is enlarged to include Markovian-type and signature-type portfolios, the only admissible random rough paths must be infinitesimally close to the It\^o rough path lift of a standard Brownian motion, up to a time change. In particular, Gaussianity is no longer a model assumption, but rather a no-arbitrage market consequence. Notably, simple strategies do not appear in the theory, and if they are then reintroduced, the rough noise is further enforced to be the It\^o rough path of Brownian motion itself. Ultimately, this implies that continuous frictionless markets based on rough path theory are inevitably constrained to the semimartingale paradigm, providing a definitive answer on the limits of this approach. Our framework covers $\alpha-$H\"older continuous rough paths for $\alpha>0$ arbitrarily small.

Suggested Citation

  • Tomoyuki Ichiba & Qijin Shi, 2025. "Unbiased Rough Integrators and No Free Lunch in Rough-Path-Based Market Models," Papers 2509.14529, arXiv.org.
  • Handle: RePEc:arx:papers:2509.14529
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.14529
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    2. Andrew L. Allan & Christa Cuchiero & Chong Liu & David J. Prömel, 2023. "Model‐free portfolio theory: A rough path approach," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 709-765, July.
    3. Eduardo Abi Jaber & Louis-Amand G'erard, 2024. "Signature volatility models: pricing and hedging with Fourier," Papers 2402.01820, arXiv.org, revised Jun 2025.
    4. Eduardo Abi Jaber & Louis-Amand Gérard, 2025. "Signature volatility models: pricing and hedging with Fourier," Post-Print hal-04435238, HAL.
    5. Christa Cuchiero & Francesca Primavera & Sara Svaluto-Ferro, 2025. "Universal approximation theorems for continuous functions of càdlàg paths and Lévy-type signature models," Finance and Stochastics, Springer, vol. 29(2), pages 289-342, April.
    6. Bruno Dupire, 2019. "Functional Itô calculus," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 721-729, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingtang Ma & Xianglin Wu & Wenyuan Li, 2025. "Option pricing under non-Markovian stochastic volatility models: A deep signature approach," Papers 2508.15237, arXiv.org.
    2. Zhou Fang, 2023. "Continuous-Time Path-Dependent Exploratory Mean-Variance Portfolio Construction," Papers 2303.02298, arXiv.org.
    3. Eduardo Abi Jaber & Donatien Hainaut & Edouard Motte, 2025. "The Volterra Stein-Stein model with stochastic interest rates," Papers 2503.01716, arXiv.org, revised Jul 2025.
    4. Alpay, Daniel & Attia, Haim & Levanony, David, 2010. "On the characteristics of a class of Gaussian processes within the white noise space setting," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1074-1104, July.
    5. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    6. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    7. Kyaw, NyoNyo A. & Los, Cornelis A. & Zong, Sijing, 2006. "Persistence characteristics of Latin American financial markets," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 269-290, July.
    8. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Xiyue Han & Alexander Schied, 2025. "Universal portfolios in continuous time: an approach in pathwise It\^o calculus," Papers 2504.11881, arXiv.org, revised Aug 2025.
    10. Tapiero, Charles S. & Vallois, Pierre, 2018. "Fractional Randomness and the Brownian Bridge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 835-843.
    11. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    12. Christian Bender & Joachim Lebovits & Jacques Lévy Véhel, 2024. "General Transfer Formula for Stochastic Integral with Respect to Multifractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 37(1), pages 905-932, March.
    13. Los, Cornelis A. & Yu, Bing, 2008. "Persistence characteristics of the Chinese stock markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 64-82.
    14. Los, Cornelis A. & Tungsong, Satjaporn, 2008. "Investment Model Uncertainty and Fair Pricing," MPRA Paper 8859, University Library of Munich, Germany.
    15. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
    16. Dufera, Tamirat Temesgen, 2024. "Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    17. Christa Cuchiero & Francesca Primavera & Sara Svaluto-Ferro, 2025. "Universal approximation theorems for continuous functions of càdlàg paths and Lévy-type signature models," Finance and Stochastics, Springer, vol. 29(2), pages 289-342, April.
    18. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    19. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org, revised Jan 2025.
    20. Pérez, D.G. & Zunino, L. & Garavaglia, M. & Rosso, O.A., 2006. "Wavelet entropy and fractional Brownian motion time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 282-288.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.14529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.