IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.15237.html
   My bibliography  Save this paper

Option pricing under non-Markovian stochastic volatility models: A deep signature approach

Author

Listed:
  • Jingtang Ma
  • Xianglin Wu
  • Wenyuan Li

Abstract

This paper studies the pricing problem in which the underlying asset follows a non-Markovian stochastic volatility model. Classical partial differential equation methods face significant challenges in this context, as the option prices depend not only on the current state, but also on the entire historical path of the process. To overcome these difficulties, we reformulate the asset dynamics as a rough stochastic differential equation and then represent the rough paths via linear or non-linear combinations of time-extended Brownian motion signatures. This representation transforms a rough stochastic differential equation to a classical stochastic differential equation, allowing the application of standard analytical tools. We propose a deep signature approach for both linear and nonlinear representations and rigorously prove the convergence of the algorithm. Numerical examples demonstrate the effectiveness of our approach for both Markovian and non-Markovian volatility models, offering a theoretically grounded and computationally efficient framework for option pricing.

Suggested Citation

  • Jingtang Ma & Xianglin Wu & Wenyuan Li, 2025. "Option pricing under non-Markovian stochastic volatility models: A deep signature approach," Papers 2508.15237, arXiv.org.
  • Handle: RePEc:arx:papers:2508.15237
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.15237
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goudenège, Ludovic & Molent, Andrea & Zanette, Antonino, 2022. "Moving average options: Machine learning and Gauss-Hermite quadrature for a double non-Markovian problem," European Journal of Operational Research, Elsevier, vol. 303(2), pages 958-974.
    2. Peter Bank & Christian Bayer & Peter K. Friz & Luca Pelizzari, 2025. "Rough PDEs for Local Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 35(3), pages 661-681, July.
    3. Peter Bank & Christian Bayer & Peter K. Friz & Luca Pelizzari, 2023. "Rough PDEs for local stochastic volatility models," Papers 2307.09216, arXiv.org, revised Mar 2025.
    4. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    5. Eduardo Abi Jaber & Louis-Amand G'erard, 2024. "Signature volatility models: pricing and hedging with Fourier," Papers 2402.01820, arXiv.org, revised Jun 2025.
    6. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    7. Erhan Bayraktar & Qi Feng & Zhaoyu Zhang, 2022. "Deep Signature Algorithm for Multi-dimensional Path-Dependent Options," Papers 2211.11691, arXiv.org, revised Jan 2024.
    8. Eduardo Abi Jaber & Louis-Amand Gérard, 2025. "Signature volatility models: pricing and hedging with Fourier," Post-Print hal-04435238, HAL.
    9. Christian Bayer & Luca Pelizzari & Jia-Jie Zhu, 2025. "Pricing American options under rough volatility using deep-signatures and signature-kernels," Papers 2501.06758, arXiv.org, revised Jun 2025.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich Horst & Wei Xu & Rouyi Zhang, 2023. "Convergence of Heavy-Tailed Hawkes Processes and the Microstructure of Rough Volatility," Papers 2312.08784, arXiv.org, revised Nov 2024.
    2. Christian Bayer & Luca Pelizzari & Jia-Jie Zhu, 2025. "Pricing American options under rough volatility using deep-signatures and signature-kernels," Papers 2501.06758, arXiv.org, revised Jun 2025.
    3. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    4. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    5. Eduardo Abi Jaber & Donatien Hainaut & Edouard Motte, 2025. "The Volterra Stein-Stein model with stochastic interest rates," Papers 2503.01716, arXiv.org, revised Jul 2025.
    6. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    7. Florian Aichinger & Sascha Desmettre, 2025. "Pricing of geometric Asian options in the Volterra-Heston model," Review of Derivatives Research, Springer, vol. 28(1), pages 1-30, April.
    8. Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
    9. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
    10. Siu Hin Tang & Mathieu Rosenbaum & Chao Zhou, 2023. "Forecasting Volatility with Machine Learning and Rough Volatility: Example from the Crypto-Winter," Papers 2311.04727, arXiv.org, revised Feb 2024.
    11. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    12. Martin Friesen & Stefan Gerhold & Kristof Wiedermann, 2024. "Small-time central limit theorems for stochastic Volterra integral equations and their Markovian lifts," Papers 2412.15971, arXiv.org.
    13. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    14. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    15. David J. Promel & David Scheffels, 2022. "Pathwise uniqueness for singular stochastic Volterra equations with H\"older coefficients," Papers 2212.08029, arXiv.org, revised Jul 2024.
    16. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    17. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Aug 2025.
    18. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    19. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    20. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.15237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.