IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v29y2025i2d10.1007_s00780-025-00557-5.html
   My bibliography  Save this article

Universal approximation theorems for continuous functions of càdlàg paths and Lévy-type signature models

Author

Listed:
  • Christa Cuchiero

    (University of Vienna)

  • Francesca Primavera

    (University of Vienna)

  • Sara Svaluto-Ferro

    (University of Verona)

Abstract

We prove a universal approximation theorem that allows approximating continuous functionals of càdlàg (rough) paths uniformly in time and on compact sets of paths via linear functionals of their time-extended signature. Our main motivation to treat this question comes from signature-based models for finance that allow the inclusion of jumps. Indeed, as an important application, we define a new class of universal signature models based on an augmented Lévy process, which we call Lévy-type signature models. They extend continuous signature models for asset prices as proposed e.g. by Perez Arribas et al. (Proceedings of the First ACM International Conference on AI in Finance, ICAIF’20, Association for Computing Machinery, New York, 1–8, 2021) in several directions, while still preserving universality and tractability properties. To analyse this, we first show that the signature process of a generic multivariate Lévy process is a polynomial process on the extended tensor algebra and then use this for pricing and hedging approaches within Lévy-type signature models.

Suggested Citation

  • Christa Cuchiero & Francesca Primavera & Sara Svaluto-Ferro, 2025. "Universal approximation theorems for continuous functions of càdlàg paths and Lévy-type signature models," Finance and Stochastics, Springer, vol. 29(2), pages 289-342, April.
  • Handle: RePEc:spr:finsto:v:29:y:2025:i:2:d:10.1007_s00780-025-00557-5
    DOI: 10.1007/s00780-025-00557-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-025-00557-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-025-00557-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Erdinc Akyildirim & Matteo Gambara & Josef Teichmann & Syang Zhou, 2022. "Applications of Signature Methods to Market Anomaly Detection," Papers 2201.02441, arXiv.org, revised Feb 2022.
    3. Terry Lyons & Sina Nejad & Imanol Perez Arribas, 2020. "Non-parametric Pricing and Hedging of Exotic Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(6), pages 457-494, November.
    4. Hao Zhou, 2003. "Itô Conditional Moment Generator and the Estimation of Short-Rate Processes," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 250-271.
    5. Huyên Pham, 2000. "On quadratic hedging in continuous time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(2), pages 315-339, April.
    6. Schweizer, Martin, 1991. "Option hedging for semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 339-363, April.
    7. Christa Cuchiero & Guido Gazzani & Janka Möller & Sara Svaluto‐Ferro, 2025. "Joint calibration to SPX and VIX options with signature‐based models," Mathematical Finance, Wiley Blackwell, vol. 35(1), pages 161-213, January.
    8. Christa Cuchiero & Martin Keller-Ressel & Josef Teichmann, 2012. "Polynomial processes and their applications to mathematical finance," Finance and Stochastics, Springer, vol. 16(4), pages 711-740, October.
    9. Bruno Dupire, 2019. "Functional Itô calculus," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 721-729, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christa Cuchiero & Francesca Primavera & Sara Svaluto-Ferro, 2022. "Universal approximation theorems for continuous functions of c\`adl\`ag paths and L\'evy-type signature models," Papers 2208.02293, arXiv.org, revised Aug 2023.
    2. Hlouskova, Jaroslava & Sögner, Leopold, 2020. "GMM estimation of affine term structure models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 2-15.
    3. Christa Cuchiero & Guido Gazzani & Janka Moller & Sara Svaluto-Ferro, 2023. "Joint calibration to SPX and VIX options with signature-based models," Papers 2301.13235, arXiv.org, revised Jul 2024.
    4. Christa Cuchiero & Guido Gazzani & Sara Svaluto-Ferro, 2022. "Signature-based models: theory and calibration," Papers 2207.13136, arXiv.org.
    5. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    6. Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
    7. Chenyu Zhao & Misha Beek & Peter Spreij & Makhtar Ba, 2025. "Polynomial approximation of discounted moments," Finance and Stochastics, Springer, vol. 29(1), pages 63-95, January.
    8. Christa Cuchiero & Philipp Schmocker & Josef Teichmann, 2023. "Global universal approximation of functional input maps on weighted spaces," Papers 2306.03303, arXiv.org, revised Feb 2025.
    9. Filipović, Damir & Larsson, Martin & Pulido, Sergio, 2020. "Markov cubature rules for polynomial processes," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1947-1971.
    10. Christa Cuchiero & Sara Svaluto-Ferro & Josef Teichmann, 2023. "Signature SDEs from an affine and polynomial perspective," Papers 2302.01362, arXiv.org, revised Feb 2025.
    11. Hardy Hulley & Thomas A. McWalter, 2015. "Quadratic Hedging of Basis Risk," JRFM, MDPI, vol. 8(1), pages 1-20, February.
    12. Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
    13. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    14. Christa Cuchiero & Janka Moller, 2023. "Signature Methods in Stochastic Portfolio Theory," Papers 2310.02322, arXiv.org, revised Oct 2024.
    15. Ramin Okhrati & Alejandro Balb'as & Jos'e Garrido, 2015. "Hedging of defaultable claims in a structural model using a locally risk-minimizing approach," Papers 1505.03501, arXiv.org.
    16. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    17. Erdinc Akyildirim & Matteo Gambara & Josef Teichmann & Syang Zhou, 2023. "Randomized Signature Methods in Optimal Portfolio Selection," Papers 2312.16448, arXiv.org.
    18. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    19. repec:uts:finphd:41 is not listed on IDEAS
    20. Anne Eyraud-Loisel, 2013. "Quadratic hedging in an incomplete market derived by an influent informed investor," Post-Print hal-00450949, HAL.
    21. Damir Filipovic & Martin Larsson & Tony Ware, 2017. "Polynomial processes for power prices," Papers 1710.10293, arXiv.org, revised Apr 2018.

    More about this item

    Keywords

    Càdlàg rough paths; Signature; Universal approximation theorems; Financial modelling with jumps;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:29:y:2025:i:2:d:10.1007_s00780-025-00557-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.