IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2207.13136.html
   My bibliography  Save this paper

Signature-based models: theory and calibration

Author

Listed:
  • Christa Cuchiero
  • Guido Gazzani
  • Sara Svaluto-Ferro

Abstract

We consider asset price models whose dynamics are described by linear functions of the (time extended) signature of a primary underlying process, which can range from a (market-inferred) Brownian motion to a general multidimensional continuous semimartingale. The framework is universal in the sense that classical models can be approximated arbitrarily well and that the model's parameters can be learned from all sources of available data by simple methods. We provide conditions guaranteeing absence of arbitrage as well as tractable option pricing formulas for so-called sig-payoffs, exploiting the polynomial nature of generic primary processes. One of our main focus lies on calibration, where we consider both time-series and implied volatility surface data, generated from classical stochastic volatility models and also from S&P500 index market data. For both tasks the linearity of the model turns out to be the crucial tractability feature which allows to get fast and accurate calibrations results.

Suggested Citation

  • Christa Cuchiero & Guido Gazzani & Sara Svaluto-Ferro, 2022. "Signature-based models: theory and calibration," Papers 2207.13136, arXiv.org.
  • Handle: RePEc:arx:papers:2207.13136
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2207.13136
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson Vadori, 2022. "Calibration of Derivative Pricing Models: a Multi-Agent Reinforcement Learning Perspective," Papers 2203.06865, arXiv.org, revised Oct 2023.
    2. Patryk Gierjatowicz & Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch & v{Z}an v{Z}uriv{c}, 2020. "Robust pricing and hedging via neural SDEs," Papers 2007.04154, arXiv.org.
    3. Erdinc Akyildirim & Matteo Gambara & Josef Teichmann & Syang Zhou, 2022. "Applications of Signature Methods to Market Anomaly Detection," Papers 2201.02441, arXiv.org, revised Feb 2022.
    4. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    5. Ofelia Bonesini & Giorgia Callegaro & Antoine Jacquier, 2021. "Functional quantization of rough volatility and applications to volatility derivatives," Papers 2104.04233, arXiv.org, revised Mar 2024.
    6. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    7. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
    8. Christa Cuchiero & Martin Keller-Ressel & Josef Teichmann, 2012. "Polynomial processes and their applications to mathematical finance," Finance and Stochastics, Springer, vol. 16(4), pages 711-740, October.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Antoine Jacquier & Aitor Muguruza & Alexandre Pannier, 2021. "Rough multifactor volatility for SPX and VIX options," Papers 2112.14310, arXiv.org, revised Nov 2023.
    11. Imanol Perez Arribas & Cristopher Salvi & Lukasz Szpruch, 2020. "Sig-SDEs model for quantitative finance," Papers 2006.00218, arXiv.org, revised Jun 2020.
    12. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A generative adversarial network approach to calibration of local stochastic volatility models," Papers 2005.02505, arXiv.org, revised Sep 2020.
    13. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    14. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    15. Christian Bayer & Paul Hager & Sebastian Riedel & John Schoenmakers, 2021. "Optimal stopping with signatures," Papers 2105.00778, arXiv.org.
    16. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    17. Terry Lyons & Sina Nejad & Imanol Perez Arribas, 2020. "Non-parametric Pricing and Hedging of Exotic Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(6), pages 457-494, November.
    18. Sana Ben Hamida & Rama Cont, 2005. "Recovering Volatility from Option Prices by Evolutionary Optimization," Post-Print hal-02490586, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christa Cuchiero & Philipp Schmocker & Josef Teichmann, 2023. "Global universal approximation of functional input maps on weighted spaces," Papers 2306.03303, arXiv.org, revised Feb 2024.
    2. Bruno Dupire & Valentin Tissot-Daguette, 2022. "Functional Expansions," Papers 2212.13628, arXiv.org, revised Mar 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christa Cuchiero & Guido Gazzani & Janka Moller & Sara Svaluto-Ferro, 2023. "Joint calibration to SPX and VIX options with signature-based models," Papers 2301.13235, arXiv.org.
    2. Christa Cuchiero & Philipp Schmocker & Josef Teichmann, 2023. "Global universal approximation of functional input maps on weighted spaces," Papers 2306.03303, arXiv.org, revised Feb 2024.
    3. Christa Cuchiero & Sara Svaluto-Ferro & Josef Teichmann, 2023. "Signature SDEs from an affine and polynomial perspective," Papers 2302.01362, arXiv.org.
    4. Christa Cuchiero & Francesca Primavera & Sara Svaluto-Ferro, 2022. "Universal approximation theorems for continuous functions of c\`adl\`ag paths and L\'evy-type signature models," Papers 2208.02293, arXiv.org, revised Aug 2023.
    5. Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
    6. Christa Cuchiero & Luca Di Persio & Francesco Guida & Sara Svaluto-Ferro, 2022. "Measure-valued processes for energy markets," Papers 2210.09331, arXiv.org.
    7. Nelson Vadori, 2022. "Calibration of Derivative Pricing Models: a Multi-Agent Reinforcement Learning Perspective," Papers 2203.06865, arXiv.org, revised Oct 2023.
    8. Yannick Limmer & Blanka Horvath, 2023. "Robust Hedging GANs," Papers 2307.02310, arXiv.org.
    9. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    10. Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
    11. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    12. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    13. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
    14. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    15. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    16. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    17. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    18. repec:uts:finphd:41 is not listed on IDEAS
    19. Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.
    20. Damien Ackerer & Damir Filipović & Sergio Pulido, 2018. "The Jacobi stochastic volatility model," Finance and Stochastics, Springer, vol. 22(3), pages 667-700, July.
    21. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.13136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.