IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.00218.html
   My bibliography  Save this paper

Sig-SDEs model for quantitative finance

Author

Listed:
  • Imanol Perez Arribas
  • Cristopher Salvi
  • Lukasz Szpruch

Abstract

Mathematical models, calibrated to data, have become ubiquitous to make key decision processes in modern quantitative finance. In this work, we propose a novel framework for data-driven model selection by integrating a classical quantitative setup with a generative modelling approach. Leveraging the properties of the signature, a well-known path-transform from stochastic analysis that recently emerged as leading machine learning technology for learning time-series data, we develop the Sig-SDE model. Sig-SDE provides a new perspective on neural SDEs and can be calibrated to exotic financial products that depend, in a non-linear way, on the whole trajectory of asset prices. Furthermore, we our approach enables to consistently calibrate under the pricing measure $\mathbb Q$ and real-world measure $\mathbb P$. Finally, we demonstrate the ability of Sig-SDE to simulate future possible market scenarios needed for computing risk profiles or hedging strategies. Importantly, this new model is underpinned by rigorous mathematical analysis, that under appropriate conditions provides theoretical guarantees for convergence of the presented algorithms.

Suggested Citation

  • Imanol Perez Arribas & Cristopher Salvi & Lukasz Szpruch, 2020. "Sig-SDEs model for quantitative finance," Papers 2006.00218, arXiv.org, revised Jun 2020.
  • Handle: RePEc:arx:papers:2006.00218
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.00218
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Terry Lyons & Sina Nejad & Imanol Perez Arribas, 2019. "Numerical method for model-free pricing of exotic derivatives using rough path signatures," Papers 1905.01720, arXiv.org, revised Feb 2020.
    2. Terry Lyons & Sina Nejad & Imanol Perez Arribas, 2019. "Nonparametric pricing and hedging of exotic derivatives," Papers 1905.00711, arXiv.org.
    3. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    4. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
    5. Flint, Guy & Hambly, Ben & Lyons, Terry, 2016. "Discretely sampled signals and the rough Hoff process," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2593-2614.
    6. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A generative adversarial network approach to calibration of local stochastic volatility models," Papers 2005.02505, arXiv.org, revised Sep 2020.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
    2. Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
    3. Nelson Vadori, 2022. "Calibration of Derivative Pricing Models: a Multi-Agent Reinforcement Learning Perspective," Papers 2203.06865, arXiv.org, revised Oct 2023.
    4. Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
    5. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    6. Valentin Tissot-Daguette, 2021. "Projection of Functionals and Fast Pricing of Exotic Options," Papers 2111.03713, arXiv.org, revised Apr 2022.
    7. Christa Cuchiero & Tonio Mollmann & Josef Teichmann, 2023. "Ramifications of generalized Feller theory," Papers 2308.03858, arXiv.org.
    8. Christa Cuchiero & Francesca Primavera & Sara Svaluto-Ferro, 2022. "Universal approximation theorems for continuous functions of c\`adl\`ag paths and L\'evy-type signature models," Papers 2208.02293, arXiv.org, revised Aug 2023.
    9. Christa Cuchiero & Guido Gazzani & Sara Svaluto-Ferro, 2022. "Signature-based models: theory and calibration," Papers 2207.13136, arXiv.org.
    10. Yannick Limmer & Blanka Horvath, 2023. "Robust Hedging GANs," Papers 2307.02310, arXiv.org.
    11. Christa Cuchiero & Philipp Schmocker & Josef Teichmann, 2023. "Global universal approximation of functional input maps on weighted spaces," Papers 2306.03303, arXiv.org, revised Feb 2024.
    12. Christa Cuchiero & Guido Gazzani & Janka Moller & Sara Svaluto-Ferro, 2023. "Joint calibration to SPX and VIX options with signature-based models," Papers 2301.13235, arXiv.org.
    13. Fermanian, Adeline, 2022. "Functional linear regression with truncated signatures," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    14. Bruno Dupire & Valentin Tissot-Daguette, 2022. "Functional Expansions," Papers 2212.13628, arXiv.org, revised Mar 2023.
    15. Owen Futter & Blanka Horvath & Magnus Wiese, 2023. "Signature Trading: A Path-Dependent Extension of the Mean-Variance Framework with Exogenous Signals," Papers 2308.15135, arXiv.org, revised Aug 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    2. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    3. Terry Lyons & Sina Nejad & Imanol Perez Arribas, 2019. "Numerical method for model-free pricing of exotic derivatives using rough path signatures," Papers 1905.01720, arXiv.org, revised Feb 2020.
    4. Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch, 2020. "Solving path dependent PDEs with LSTM networks and path signatures," Papers 2011.10630, arXiv.org.
    5. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    6. Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
    7. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    8. Christa Cuchiero & Luca Di Persio & Francesco Guida & Sara Svaluto-Ferro, 2022. "Measure-valued processes for energy markets," Papers 2210.09331, arXiv.org.
    9. Francesca Biagini & Lukas Gonon & Thomas Reitsam, 2021. "Neural network approximation for superhedging prices," Papers 2107.14113, arXiv.org.
    10. Nelson Vadori, 2022. "Calibration of Derivative Pricing Models: a Multi-Agent Reinforcement Learning Perspective," Papers 2203.06865, arXiv.org, revised Oct 2023.
    11. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
    12. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
    13. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2020. "Accuracy of Deep Learning in Calibrating HJM Forward Curves," Papers 2006.01911, arXiv.org, revised May 2021.
    14. Patryk Gierjatowicz & Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch & v{Z}an v{Z}uriv{c}, 2020. "Robust pricing and hedging via neural SDEs," Papers 2007.04154, arXiv.org.
    15. Ariel Neufeld & Philipp Schmocker, 2022. "Chaotic Hedging with Iterated Integrals and Neural Networks," Papers 2209.10166, arXiv.org, revised Feb 2023.
    16. Christa Cuchiero & Philipp Schmocker & Josef Teichmann, 2023. "Global universal approximation of functional input maps on weighted spaces," Papers 2306.03303, arXiv.org, revised Feb 2024.
    17. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    18. Terry Lyons & Sina Nejad & Imanol Perez Arribas, 2019. "Nonparametric pricing and hedging of exotic derivatives," Papers 1905.00711, arXiv.org.
    19. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    20. Jorino van Rhijn & Cornelis W. Oosterlee & Lech A. Grzelak & Shuaiqiang Liu, 2021. "Monte Carlo Simulation of SDEs using GANs," Papers 2104.01437, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.00218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.