IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.14343.html
   My bibliography  Save this paper

Numerical analysis of a particle system for the calibrated Heston-type local stochastic volatility model

Author

Listed:
  • Christoph Reisinger
  • Maria Olympia Tsianni

Abstract

We analyse a Monte Carlo particle method for the simulation of the calibrated Heston-type local stochastic volatility (H-LSV) model. The common application of a kernel estimator for a conditional expectation in the calibration condition results in a McKean-Vlasov (MV) stochastic differential equation (SDE) with non-standard coefficients. The primary challenges lie in certain mean-field terms in the drift and diffusion coefficients and the $1/2$-H\"{o}lder regularity of the diffusion coefficient. We establish the well-posedness of this equation for a fixed but arbitrarily small bandwidth of the kernel estimator. Moreover, we prove a strong propagation of chaos result, ensuring convergence of the particle system under a condition on the Feller ratio and up to a critical time. For the numerical simulation, we employ an Euler-Maruyama scheme for the log-spot process and a full truncation Euler scheme for the CIR volatility process. Under certain conditions on the inputs and the Feller ratio, we prove strong convergence of the Euler-Maruyama scheme with rate $1/2$ in time, up to a logarithmic factor. Numerical experiments illustrate the convergence of the discretisation scheme and validate the propagation of chaos in practice.

Suggested Citation

  • Christoph Reisinger & Maria Olympia Tsianni, 2025. "Numerical analysis of a particle system for the calibrated Heston-type local stochastic volatility model," Papers 2504.14343, arXiv.org.
  • Handle: RePEc:arx:papers:2504.14343
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.14343
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anthonie W. Van Der Stoep & Lech A. Grzelak & Cornelis W. Oosterlee, 2014. "The Heston Stochastic-Local Volatility Model: Efficient Monte Carlo Simulation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-30.
    2. Andrei Cozma & Christoph Reisinger, 2017. "Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models," Papers 1706.07375, arXiv.org, revised Oct 2018.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    5. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Christian Bayer & Denis Belomestny & Oleg Butkovsky & John Schoenmakers, 2022. "A Reproducing Kernel Hilbert Space approach to singular local stochastic volatility McKean-Vlasov models," Papers 2203.01160, arXiv.org, revised Jan 2024.
    8. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    9. G. Deelstra & F. Delbaen, 1998. "Convergence of discretized stochastic (interest rate) processes with stochastic drift term," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 14(1), pages 77-84, March.
    10. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A generative adversarial network approach to calibration of local stochastic volatility models," Papers 2005.02505, arXiv.org, revised Sep 2020.
    11. Benjamin Jourdain & Alexandre Zhou, 2020. "Existence of a calibrated regime switching local volatility model," Mathematical Finance, Wiley Blackwell, vol. 30(2), pages 501-546, April.
    12. Christian Bayer & Denis Belomestny & Oleg Butkovsky & John Schoenmakers, 2024. "A reproducing kernel Hilbert space approach to singular local stochastic volatility McKean–Vlasov models," Finance and Stochastics, Springer, vol. 28(4), pages 1147-1178, October.
    13. Andrei Cozma & Christoph Reisinger, 2017. "Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process," Papers 1704.07321, arXiv.org, revised Oct 2018.
    14. Griselda Deelstra & Freddy Delbaen, 1998. "Convergence of discretised stochastic interest rate: processes with stochastic drift term," ULB Institutional Repository 2013/7584, ULB -- Universite Libre de Bruxelles.
    15. Jianhai Bao & Xing Huang, 2022. "Approximations of McKean–Vlasov Stochastic Differential Equations with Irregular Coefficients," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1187-1215, June.
    16. Damiano Brigo & Aurélien Alfonsi, 2005. "Credit default swap calibration and derivatives pricing with the SSRD stochastic intensity model," Finance and Stochastics, Springer, vol. 9(1), pages 29-42, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrei Cozma & Matthieu Mariapragassam & Christoph Reisinger, 2015. "Convergence of an Euler scheme for a hybrid stochastic-local volatility model with stochastic rates in foreign exchange markets," Papers 1501.06084, arXiv.org, revised Oct 2016.
    2. Andrei Cozma & Christoph Reisinger, 2015. "Exponential integrability properties of Euler discretization schemes for the Cox-Ingersoll-Ross process," Papers 1601.00919, arXiv.org.
    3. Andrei Cozma & Christoph Reisinger, 2017. "Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models," Papers 1706.07375, arXiv.org, revised Oct 2018.
    4. Gao, Xiangyu & Wang, Jianqiao & Wang, Yanxia & Yang, Hongfu, 2022. "The truncated Euler–Maruyama method for CIR model driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 189(C).
    5. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    6. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    7. Andrei Cozma & Christoph Reisinger, 2017. "Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process," Papers 1704.07321, arXiv.org, revised Oct 2018.
    8. Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.
    9. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2013, January-A.
    10. Chantal Labb'e & Bruno R'emillard & Jean-Franc{c}ois Renaud, 2010. "A simple discretization scheme for nonnegative diffusion processes, with applications to option pricing," Papers 1011.3247, arXiv.org.
    11. Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.
    12. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    13. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    14. Pierre-Edouard Arrouy & Alexandre Boumezoued & Bernard Lapeyre & Sophian Mehalla, 2022. "Jacobi stochastic volatility factor for the LIBOR market model," Finance and Stochastics, Springer, vol. 26(4), pages 771-823, October.
    15. Kamrani, Minoo & Hausenblas, Erika, 2025. "An adaptive positive preserving numerical scheme based on splitting method for the solution of the CIR model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 673-689.
    16. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    17. Sergey Nasekin & Wolfgang Karl Hardle, 2020. "Model-driven statistical arbitrage on LETF option markets," Papers 2009.09713, arXiv.org.
    18. del Baño Rollin, Sebastian & Ferreiro-Castilla, Albert & Utzet, Frederic, 2010. "On the density of log-spot in the Heston volatility model," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2037-2063, September.
    19. Maarten Wyns & Jacques Du Toit, 2016. "A Finite Volume - Alternating Direction Implicit Approach for the Calibration of Stochastic Local Volatility Models," Papers 1611.02961, arXiv.org.
    20. Bégin Jean-François & Bédard Mylène & Gaillardetz Patrice, 2015. "Simulating from the Heston model: A gamma approximation scheme," Monte Carlo Methods and Applications, De Gruyter, vol. 21(3), pages 205-231, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.14343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.